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Abstract
In this paper, a SIR Model is established for Monkey Pox disease.
SIR is an acronym which stands for Susceptible, Infectious and
Recovered groups in a given population. An equivalent
deterministic model which is an auxiliary tool is transformed into
a stochastic model. The stochastic model is studied by numerical
simulation which is used to analyse the control of transmission of
the disease. Numerical simulation of the model shows that an
increase in vaccination leads to low disease prevalent in a
population. Raising awareness of risk factors and educating people
about the measure they can take to reduce exposure to the virus is
the main prevention strategy for Monkey Pox.

Introduction
Monkeypox is a viral zoonosis, meaning it is a virus transmitted
to humans from animals, sharing symptoms with smallpox
but generally presenting less severe clinical manifestations.
With the eradication of smallpox in 1980 and the subsequent
discontinuation of smallpox vaccination, Monkeypox has
become the most significant orthopox virus. It is prevalent in
Central and West Africa, often found in close proximity to
tropical rainforests (WHO, 2017).

The first documented case of human Monkeypox occurred
in 1970 in a nine­year­old boy in the Democratic Republic of
Congo, where smallpox had been eliminated in 1968.
Subsequently, most cases have been reported in rural, rainforest
regions of the Congo Basin, particularly in the Democratic
Republic of the Congo, where it is considered endemic (WHO,
2017).

Since 1970, human Monkeypox cases have been reported
in eleven African countries, including Nigeria, where the
largest documented outbreak occurred in 2017, forty years
after the last confirmed case. The outbreak involved 122
confirmed or probable cases with a 6% case fatality rate,
affecting individuals aged between 2 days and 50 years, with
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a higher prevalence in males. Common
symptoms included vesiculopustular rash,
fever, pruritus, headache, and
lymphadenopathy. In 2019, Nigeria reported
113 suspected cases, with 46 confirmed cases
and one death. Four states (Lagos, Delta,
Rivers, and Bayelsa) accounted for 85% of
the confirmed cases (NCDC, 2019).

Monkeypox infection in humans typically
results from direct contact with the blood,
bodily fluids, or cutaneous material of
infected animals. Evidence of Monkeypox
virus infection has been found in various
animals, including rope squirrels, tree
squirrels, Gambian poached rats, dormice,
and different monkey species. The natural
reservoir of Monkeypox has not yet been
identified, but rodents are considered the
most likely source. Inadequately cooked
meat and other animal products from
infected animals pose a potential risk (WHO,
2017).

While secondary or human­to­human
transmission is limited, close contact with
respiratory secretions can lead to infection.
Droplet respiratory particle transmission
usually requires prolonged face­to­face
contact, putting health workers and
household members of active cases at greater
risk. Transmission can also occur via the
placenta, leading to congenital Monkeypox.
Therefore, prevention strategies focus on
raising awareness of risk factors and
educating people about measures to reduce
virus exposure. Ongoing scientific studies are
assessing the feasibility and appropriateness
of using vaccines for Monkeypox prevention
and control (WHO, 2017).

To complement this research, existing
literature on the mathematical study of
Monkeypox is briefly outlined. Bhunu and
Mushayabasa (2011) developed an SIR
mathematical model for the transmission
dynamics of pox­like infections in humans
and rodents/wild animals. Emeka et al
(2018) incorporated an imperfect vaccine
compartment in their mathematical model
for Monkeypox virus transmission dynamics.
Bankuru, Samuel, William, Parsa, Jan and
Dewey. (2020) employed a game theoretic
model to assess vaccination strategies,
suggesting that Monkeypox is controllable
but may not be eradicated by vaccination

alone in a fully endemic equilibrium. Lasisi,
Akinwande and Oguntolo, (2020) developed
a mathematical model for the transmission
of Monkeypox in humans using ordinary
differential equations, providing valuable
insights into the effective basic reproduction
number of the model. This paper contributes
to the field by offering a stochastic analysis
of the transmission dynamics of Monkeypox
using Allen’s Method (2008).

Model Formulation
The Deterministic Model Formulation
A compartment non­linear deterministic
Model is introduced here, adapted from Peter
et al (2018) which was previously used to
describe the transmission of infectious
disease. The compartmental model sub­
divided the human population into three
classifications namely:
S: Number of susceptible individuals

who can be infected
I: Number of infectious case in the

community, who are capable of
transmitting the diseases.

R: Number of individuals removed
from the chain of transmission
(cored or dead and buried)

The flow diagram for the transmission
dynamics is shown in Figure 1.

The SIR model can be represented by a
system of ordinary differential equations as

follows:
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Figure 1: Transmission dynamics of
Monkeypox
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The parameters used for the model explained
are explained on Table 1.

Table 1: Model parameters

Parameter Description
ó Rate of loss immunity after

recovery/vaccination
 Rate of recovery from infection

Disease induced death rate
 Natural death rate
 Contact rate

Vaccination rate
 Recruitment rate

The model is based on the following
assumptions:
i. Individuals are recruited into the

susceptible class through birth
ii. All susceptible individuals can be

infected through a direct contact with
infectious individuals.

iii. Some newborns are vaccinated at
birth while some are not.

iv. Those in each class can die as a result
of natural death

Existence and Uniqueness of the solution
Lemma 1: The closed set

δ 

� 

D = {S + I + R:/S − S(0)/ a,/I − I(0)/b,/R − R(0)/c} 

Proof:
Consider the biologically­feasible region D,
defined above. The model in (2.1) must be
continuous and bounded in D. Therefore,

, i, j, = 1, 2, 3 are continuous and

bounded. All solution of the (2.1) with initial
conditions in D. Hence the model (1) has a
unique solution in D, which means that the
model (3.1) is epidemiologically and
mathematically well posed.

Equilibrium State of the Model Analysis
We now solve the model equations to obtain

the equilibrium states. At equilibrium

��(�)

��
=  

��(�)

��
=  

��(�)

��
= 0  

Let: 

Let: 

 S(t) = k, I(t) = l, R(t) = m 

Then the equations (2.1) become: 

� − ��� − (� + �)� + � = 0

��� − (� + � + �)� = 0

�� − (� + �)� + �� = 0
�         (2) 

Existence of Endemic Equilibrium Point
(EEP)
Endemic Equilibrium point (EEP) is a steady
– state solution where the disease persists in
the populations. Therefore, from the model
equations, we have the following
corresponding to the endemic equilibrium
points in the population being infected with

Monkey pox.

� =
+ �+ 


    (3) 

 � =
 − �− ��−�2− 2− 2�− 3+  − − �− 2
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 (4) 

 � =
 − 2− �− 2+ ��+� + ��2+2�� + �2

 (+ �+ �+ 2+ 
       (5) 

Disease Free Equilibrium
The disease free equilibrium is defined as the
point in which no disease is present in the
population, which is represented in the
model as I = 0 . The system of equation
simplifies to

S1 =  - s; I1 = 0; R1 = 0 

Thus, the disease­free equilibrium lies at the

point ( )

The Basic Reproduction Number (R
o
)

According to Diekmann et al (1990), the
basic reproduction Number, R

0 
is defined as

the number of secondary infections that one
infectious individual would create over the
duration of the infectious period, provided
that everyone also is susceptible. R

0
 = 1, is a

threshold below which the generation of
secondary cases is insufficient to maintain
the infection within human community. If
R

0
<1, each individual produces on average,

less than one new infected individuals and
hence the disease dies out. If R

0
>1, each
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individual produces more than one new
infected individual and hence the disease is
capable of invading the susceptible
population. It is therefore a useful quantity
in the study of a disease as it sets the
threshold for its establishment.

In order to compute R
0
, it is important to

distinguish new infections from all other
changes in the population. Let:
F

i
 be the rate of appearance of new infectious

in compartment.
V­

I
 = V

i 
– V

i 
, be the different between the

rate of transfer of individuals out of
compartment I, (V

i 
), by all other mean and

the rate of transfer of individual in the
compartment, i, (V

i
 ) by all other means.

X
0
 be the disease­free equilibrium point

Let:

F = �
���

���
 (�� )� and V = �

���

���
 (�� )�  (7) 

With l  i, j  m. 

F is non­negative, V is a non­singular m­
Matrix in which both are the m x m matrices,
where m stands for the number of infected
classes. We use next generation operator
approach to define the basic reproduction
number of the model as

Ro = 
�

(+�+)
   (8) 

Local Stability of the Disease­Free
Equi l i bri um (E

0­
)

The Local stability of the disease­free
equilibrium can be discussed by examining
the linearized form of the system (2.1) at the
steady state E

0
.

Lemma 2: The disease­free equilibrium
point E

0
 for the system (2.1) is locally

asymptotically stable if R
0
<1 and unstable if

R
0
>1

The Jacobian matrix G is given by:

G =�
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The characteristic equation of the above
matrix is defined by:

The eigenvalues of G(E
0
)

are

From the above, we have all the eigenvalues
being real and negative, which shows that
the model is locally asymptotically stable.

Formulation of the stochastic Model
Allen, Allen, Arciniega and Greenwood
(2008) used a method of discretizing the
continuous time stochastic process. We
assume in addition to the assumptions of the
model in session 2.1 that transition from the
susceptible class to the infected class is under
some random influence which we modeled
as white noise represented by a Wiener
process.

Applying this method yields Table 2.

Table 1: Transition table and their
probabilities

Change Probability         Event
[100] T                                 Birth of susceptible

                               individuals
[­100] T                                 Susceptible dies

                                natural death
[­101] T                                 Vaccinated susceptible

                                  becomes recovered.
[­110] T                                  Susceptible becomes

                                infected
[0­10] T                                  Infected dies natural

                                 death due to the
                                                      disease.
[0­11] T                                   Infected becomes

                                 recovered
[00­1] T                                  Recovered dies natural

                                death
[10­1] T                                  Recovered loses

                                 immunity

P1 = Δt 

P2 = sΔt 

P3 = ρsΔt 

P4 = sΔt 

P5 = (δ + ) IΔt 

P6 = IΔt 

P7 = RΔt 

P8 = RΔt 
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Stochastic differential equation is
characterized by the drift (diffusion)
coefficient and the diffusion (volatility)
where the drift is given by:

�⃗ = � ��  λ�

8

� =1
 

Where λ
j
 and P

j
 are the random changes and

the transition probabilities defined in the table

1. That is;

� = P1�
1
0
0

� + P2�
−1
  0
  0

� + P3�
−1
  0
  1

� + P4�
−1
   1
   0

� + P5�
   0
−1
   0

� + P6�
   0
−1
    1

� + P7�
  0
  0
−1

� + P8�
    1
    0
 −1

� 

= �

 0

  0 

� + �
−�
  0
  0

� + �

−��
  0

  ��
� + �

−��
��
  0

� + �
0

 −(� + )�
 0

� + �
0

−�
 �

� + �
0
 0

 −�
� + �

�
  0

−�
� 

Hence, the drift vector �⃗ of order is:  
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The covariance matrix is defined by:  
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8
� =1 �� (�� )T   (12) 
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Multiplying the covariance matrix, we

have

V = P1�
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Which therefore, implies;
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Therefor the covariance matrix V of order
3x3 is given by:

� = �
 + ( + � + ��)� + ��

−���
−�� − ��
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��� + ( + )� + �
−�
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−�
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Consequently, the resulting stochastic
differential equation model of the equivalent
ordinary differential model in equation (1)

is:

��⃗ = � ��, �⃗(�)� �� + ��⃗
1

2 ��, �⃗(�)� �����⃗ (�)  

�⃗(0) = [�1(0)�2(0)�3(0)]   (14) 

where and  are as defined in equation

(3.1) and (3.3) respectively which is the
stochastic counterpart of

Method of Solution
The Millstein method is used for the
simulation of the SDE SIR model for the
transmission of Monkey Pox.  The Milstein
scheme is an extension of the Euler­
Maruyama method and it is known to be
more accurate and refined method
compared to Euler­Maruyama, particularly
when dealing with SDEs that have strong
or nonlinear stochastic terms. The scheme
makes used of the Ito lemma to improve on
the accuracy of the Euler­Maruyama
methods by adding a second order term to
the approximation of the Ito process.

Representing  the partial derivative of

 with respect to x of the Ito type SDE

which is given by

��� = ��� + ����  

The Milstein is given by:

��+1 = �� + �(��, ��)(��+1 − ��) + �(�� , ��)(��+1 − ��) 

+
1

2
�(��, ��)�� (�� , ��){(��+1 − ��)

2 − (��+1 − ��)}  (15) 

This can be written in a more compact
form as:

The Milstein scheme is known to have both
weak and strong convergences of order 1.
The algorithm for the method is as follows:

��+1 = �� + �∆� + �∆�� +
1

2
��� {(∆��)

2 − ∆�}  (16) 
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Algorithm for the Milstein Method 

 

Function Milstein Method (a, b, X0, T, dt): 

1.  Input the following: 
             �(�, �(�))- Drift term function 

             �(�, �(�)) - Diffusion term function 

             �0- Initial value of the process 

             �- Total simulation time 

             ��- Time step size 

2. Determine the number of time steps 

             �������� = ���(
�

��
)     

3. Initialize arrays to store the time and process values 
    times = [0.0] * (num_steps + 1) 

    X = [0.0] * (num_steps + 1) 

4. Set initial values 
    times[0] = 0.0 

     X[0] = X0 

5. Perform the Milstein simulation 
             for i in range(1, num_steps + 1): 

a. Current time 
            t = i * dt 

         times[i] = t 

b. Calculate the deterministic and stochastic terms 
         drift_term = �(�, �(�) 

        diffusion_term = �(�, �(�))- 

c. Generate a random increment (sampled from N(0, dt)) 
d. �� = ����(��) ∗ ����_������( ) 
       Calculate the correction term due to second-order expansion 

            correction_term = 0.5 ∗ �(�, �(��−1) ∗ �(�, �(��−1) ∗ ��2 − �� 

         Update the process value using the Milstein scheme 

            �� = ��−1 + �����_���� ∗ �� + ���������_���� ∗ �� + ����������_���� 

6. return times, X 
 

The algorithm was implemented in Python programming language.
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Figure 1:Deterministic model simulation

Figure 2: Stochastic model simulation
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Conclusion
In conclusion, this work provides a
comprehensive overview of Monkeypox, a
viral zoonosis that has gained significance
since the eradication of smallpox. The study
delves into the historical background,
epidemiology, and clinical characteristics of
Monkeypox, with a focus on the notable
outbreaks in Nigeria. The paper emphasizes
the importance of raising awareness about
risk factors and preventive measures, and
highlights ongoing scientific efforts to
explore the feasibility of vaccination
strategies.

In addition to the descriptive analysis, the
research contributes to the field by
incorporating and SDE based mathematical
modeling approach to better understand the
transmission dynamics of Monkeypox.
While emphasizing the limited existing
literature on mathematical modeling of
Monkeypox, the paper underscores the
importance of such models in informing
public health interventions.

In conclusion, this research not only
consolidates existing knowledge on
Monkeypox but also contributes novel
insights through mathematical modeling,
thereby enhancing our understanding the
dynamics of the spread of the disease.
Continued interdisciplinary efforts,
combining epidemiology, clinical studies,
and mathematical modeling are
recommended as being crucial for
addressing the challenges posed by
Monkeypox in the future.
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