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Abstract

The study investigates efficiency of some estimators for panel data model
with non-normal error structure and varying sample sizes. It considers
one-stage and two-stage error component models with three exogenous
and one endogenous variable. The efficiency of four estimators of panel
data model based on one-step and two-step error component models across
varying finite samples were investigated under normal and non-normal
error structures. The data set used for the panel linear model (PLM) and
the general feasible generalized least squares (GFGLS) model for
investigating efficiency of the four estimators in this study were simulated
using R software. Three predictors were simulated from normal
distributions at the various samples sizes and variances. The error
structures were simulated from Gaussian distribution with mean 0 and
variance 1 and Exponential distribution with lambda 1 in the plm library
of the R software. The four estimators were utilized to estimate the fixed
parameters that form the models and their efficiencies were assessed based
on absolute bias, coefficient of multiple determination and root mean
square error (RMSE) of parameter estimates. The results of the study
indicated that the Within Ordinary Least Squares (WOLS) estimator is
the most stable and most efficient estimator of panel data model parameters
than the Pooling, Between (BTW) and the First Difference (FD)
estimators with both one-stage and two-stage normal and non-normal
error structures. It is evident from this study that the four estimators
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have increasing R ; and the FD estimator is the next most stable while

both pooling and BTW are worse but pooling is more stable under varying
samples sizes (dimension).

Keywords: Finite Sample Properties, Efficiency of Some
Estimators, Panel Data Model, Non-Normal Error Structure
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Introduction

Panel Data are data in which we observe
repeated cross-sections of the same
individuals. They involve observations
obtained from the same set of entities at
several periods of time and in the same units.
These units could be individuals, households,
firms, regions or countries. It has the
combination of both time-series and cross-
sectional data characteristics (Garba et al.,
2013). Generally, a panel data regression is
different from a regular time-series or cross-
sectional regression because of the double
subscript on its variables, i.e.

where isthe households, individuals, firms,

countries, etc. and t is the time. The
subscript, therefore, is the cross-sectional
dimension whereas t is the time-series
dimension. is a scalar, is and is the i
observation of the k explanatory variables.
Most of the panel data applications utilize a
one-way error component model for the
disturbances, withwhere is the unobservable
individual-specific effect and is the
remainder disturbance.

The increasing availability of data
observed on cross-sections of units (i.e.
households, firms, countries etc.) over time
has given rise to a number of estimation
approaches exploiting this double
dimensionality to cope with some of the
typical problems associated with economic
data. A lot of research efforts have been
invested by econometricians to investigate
model specification for these estimation
approaches, testing and tackling a number
of issues arising from the particular
statistical problems associated with such
data but research efforts to study stability of
parameter estimates from these estimation
methods, especially with non-normal error
structures cannot be exhausted. Results from
several studies (See Maddala, 2008; Creel,
2011; Wooldridge, 2012) have shown that
the use of classical ordinary least squares
(OLS) estimator for modelling panel data is
grossly inefficient due to violations of some
basic assumptions. The critical assumptions
of the classical linear regression model
(CLRM) are that the error terms in the model
are normally distributed, with constant

variance, and there is no serial correlation.
These assumptions are often rarely satisfied
by real life panel data.

A number of research work on the
methodologies and applications of panel
data modelling have appeared in the
literature (Kapetanios et al, 2023;
Kapetanios et al, 2011; Chudik & Pesaran,
2015; Westerlund & Urbain 2015; Juodis
2022; Chudik & Pesaran, 2015; and Creel,
2011; Olofin et al., 2010). Similarly to this
current study, most of the studies that
discussed panel data modelling considered
the violation of each of the classical
assumptions separately.

In this study therefore, the efficiency (in
terms of stability of parameter estimates) of
estimators for four panel (Within (OLS),
Pooling (OLS), Between (BTW), and First
Difference (FD)) were investigated based on
one-step and two-step error component
models across varying finite samples under
normal and non-normal error structures.
The motivation behind emergence of new
panel data modelling techniques is the idea
that efficiency of existing panel model
estimators might be affected by violation of
normality assumption of the error structure,
among others as well the various forms of
panel data emanating in real life cases.

Research Methodology
This study considers one-stage and two-
stage error component models with three
exogenous and one endogenous variable.
This is in line with the work of many authors
including Garba et al. (2013) but differs in
that it considers heteroskedastic and
autocorrelated disturbances but non-
normality of error structures across varying
dimensions of panel data.

The general panel data model is given as
follows:

(1)

where  is considered to be the response

forunit attime , istheindividual specific

intercept, vector ~ contains regressors for

unit at time , vector contains regression
coefficients to be estimated and is the error
component for unit at time, andt=1, 2, .
. 5.



208 NIGERIAN ANNALS OF PURE & APPLIED SCIENCES, VOL. 6, ISSUE 1, 2023

Specifically, we considered the panel data
model that has two exogenous and one
endogenous variable as shown below;

Yie=o; + B + Bolg Uy, (2)

where a; = @ + ;. The individual specific

intercept (a;) captures the effects of those

variables that are peculiar to the it

individual and that are time invariant.
The model therefore becomes:

Yie=a; + B + faXoe + 5 Uy 3)

where g, is the individual specific error

component and u,, is the combined time
series and cross section error component with

variances g andg, respectively.

Suppose we let w,, = £, +u,,, then, model

it
(3) becomes:

Yie=o; + By + folg + Wy, (4)

General Feasible Generalized Least
Squares (GFGLS)

General feasible generalized least squares
(GFGLS) estimators are based on a two-step
estimation process: First an OLS model is

estimated, then its residuals ii,.are used to

estimate an error covariance matrix more
general than the random effects one for use
in a feasible-GLS analysis. Formally, the
estimated error covariance matrix

-~ - — 5ol
istV =1 @®Q withQ = Zle%mwhere is

the pooled OLS residuals (Wooldridge, 2012).

This framework allows the error
covariance structure inside every group of
observations to be fully unrestricted and is
therefore robust against any type of
intragroup heteroskedasticity and serial
correlation. This structure, by converse, is
assumed identical across groups and thus
general (FGLS) is inefficient under group-
wise heteroskedasticity (Wooldridge, 2012).

Moreover, the number of variance

parameters to be estimated with N = n X T

http://inapas.org.ng

data points is T (T + 1}/2, which makes
these estimators particularly suited for
situations where n > T. For example,

considering labour or household income
surveys, being problematic for “long” panels,

where Vtends to become singular and

standard errors also become biased
downwards. In a pooled time series context
(effect="time”), symmetrically, this
estimator is able to account for arbitrary
cross-sectional correlation, provided that the
latter is time-invariant (Greene, 2003). In this
case serial correlation has to be assumed
away and the estimator is consistent with
respect to the time dimension, keeping n
fixed.

The Four Estimators of Panel Data Model

i. Within Sample (OLS) Estimator:
The estimator uses information that is not
taken into account by the between estimator
and is called within estimator as it uses only
the variation within each cross-section unit.
This is also known as the fixed effects or
least squares dummy variables model,
usually estimated by OLS on transformed

data which gives consistent estimates for 5.
The data set is pre-multiplied by a matrix
My, whereM, =1, —D(DD)™'D
OLS is computed on the transformed data.
The within estimator

is B, = [(MpX) (MpX)] ™ (MpX) (MpY),
this is further simplified to;

and

Jéw = {X -MDX}_:LX .MD}" (5}

i. Pooled Sample Estimator: This
Estimator stacks the data over i and t into

one long regression with nT observations,

and estimates of the parameters are obtained
by OLS using the model (Greene, 2008).

y = XB+w ©®

where v is an nT ¥ 1 column vector of

response variables, X is an nT X k matrix of
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regressors, ffisa (k + 1) X 1 column vector

of regression coefficients, w' is an column

vector of the combined error terms. The
Pooled estimator is therefore given as follows

B i = Xy (7)

iii. Between Sample Estimator (BTW):
This regresses the group means of Y on the

group means of X’s in a regression of

observations. It uses cross-sectional variation
by averaging the observations over period t
(Creel, 2011; Wooldridge, 2012). Explicitly,
it converts all the observations into
individual-specific averages and performs
OLS on the transformed data.

Averaging over all t gives the following:

Y, = a+BiXy + BoXoi + BsXz + W, (8)
Where Y, =T7' %, Y; ;in. =T Y Xjie and'w;,

=71 ZWit fori=1,23,,nand
t
i=123

iv. First Difference Estimator (FD):
This is the ordinary least squares estimation

of the difference between the original model
and its one-period-lagged model (Arellano,
2003; Baltagi, 2005). The FD model is given
as follows:

AYy, = B1AXy + BoAXyi + B3AX3i + Awye (9)
Where AY;; =Y, =Y —1; 0Ky

= Xuie — Xui, e-15 DKot

= Xait = Xy, ¢—1;and Awye = wye —

Wy -1, fori=12,,nandt=23,,T.

Simulation Scheme
The data set used for the panel linear model

(PLM) and the general feasible generalized
least squares (GFGLS) model for
investigating efficiency of the four estimators
in this study were simulated from the
Gaussian (normal) and the exponential
distributions for three time periods

(10,25, and 50 years, under five cross-

sectional units (5, 10, 25 and 50), using R
software for statistical computing and
graphics. The response and three predictors
were simulated from normal distributions for
the four samples sizes with means 30, 40 and
50 and variances 5, 10 and 20, respectively.
The predictors in the exponential models
were simulated for the samples sizes with

lambda values of 1/6, 1/4 and 2/5,

respectively. The error structures were
simulated from Gaussian distribution with
mean 0 and variance 1 and Exponential
distribution with lambda 1 in the plm library
(Croissant and Millo, 2008) of the version
3.3.2 of the R software (R Core Team, 2015).
Two panel models from each distribution
were fitted with parameters fixed at

Bo=20,f,=3,f,=2and ;=6 4

Y (Norm) = 20 + 3X1it(Norm) + 2X2it(Norm)

+6X3it(Norm) + Uit (Norm) + Eit(Norm) (10)
Yit(Exp) = 20 + 3X1it(Exp) + 2X2it(Exp)
+ 6X3it(Exp) + Uit (Exp) + Eit(Exp) (11)

Each of the combinations using equations 10
and 11 was iterated 1000 times and the
assessments of the four estimators considered
were based on the absolute bias, coefficient

of multiple determination (R*) adjusted

P

coefficient of multiple determination [R =3 }-_}

and RMSE of parameter estimates.
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Tablel: Scheme for Data Simulation from Gaussian Distribution
Gaussian Distribution
Dimension
X, X, X Error(s;,) Error (u;p

T10N5 rnorm(50,30,5) rnorm(50,4 010) rnorm(50, 50, 20) rnorm(50,0,1) rep(rnorm(5,0,1),10)
TI10N10 rmorm(100,30,5) rnorm(100,4 010) rnorm(100,50, 20) rnorm(100,0,1) rep(rnorm(10,0,1),10)
T10N25 rnorm(250,30,5) rnorm(250,4 010) rnorm(250,50,20) rnorm(250,0,1) rep(rnorm(25,0,1),10)
T10N50 rnorm(500,30,5) rnorm(500,4 010) rnorm(500,50, 20) rnorm(500,0,1) rep(rnorm(50,0,1),10)
T25N5 rnorm(125,30,5) rnorm(125,4 010) rnorm(125,50,20) rnorm(125,0,1) rep(rnorm(5,0,1),25)
T25N10 rnorm(250,30,5) rnorm(250,4 010) rnorm(250,50,20) rnorm(250,0,1) rep(rnorm(10,0,1),25)
T25N25 rnorm(6 2530,5) rnorm(6 254 010) rnorm(6 2550,20) rnorm(6 250,1) rep(rnorm(25,0,1),25)
T25N50 rmorm(1250,30,5) rnorm(1250,4 010) rnorm(1250,50,20) rnorm(1250,0,1) rep(rnorm(50,0,1),25)
T50N5 rnorm(250,30,5) rnorm(250,4 010) rnorm(250,50,20) rnorm(250,0,1) rep(rnorm(5,0,1),50)
T50N10 rnorm(500,30,5) rnorm(500,4 010) rnorm(500,50,20) rnorm(500,0,1) rep(rnorm(10,0,1),50)
T50N25 rmorm(1250,30,5) rnorm(1250,4 010) rnorm(1250,50,20) rnorm(1250,0,1) rep(rnorm(25,0,1),50)
T50N50 rnmorm(2500,30,5) rnorm(2500,4 010) rnorm(2500,50,20) rnorm(2500,0,1) rep(rnorm(50,0,1),50)

Note: rnorm is the function to simulate normal random sample in R software

Table2: Scheme for Data Simulation from Exponential Distribution

Exponential Distribution

Dimension
X, X, X3 Error(g;, Error(u;,
T10N5 rexp(50,5/30) rexp(50,10/4 0 rexp(50,20/50) rexp(50,1) rep(rexp(5,1),10)
T10N10 rexp(100,5/30) rexp(100,10/4 rexp(100,20/50) rexp(100,1) rep(rexp(10,1),10
T10N25 rexp(250,5/30) rexp(250,10/4 0 rexp(250,20/50) rexp(250,1) rep(rexp(25,1),10
T10N50 rexp(500,5/30) rexp(500,10/4 rexp(500,20/50) rexp(500,1) rep(rexp(50,1),10
T25N5 rexp(125,5/30) rexp(125,10/4 rexp(125,20/50) rexp(125,1) rep(rexp(5,1),25)
T25N10 rexp(250,5/30) rexp(250,10/4 rexp(250,20/50) rexp(250,1) rep(rexp(10,1),25
T25N25 rexp(6 255/30) rexp(6 2510/4 0 rexp(6 2520/50) rexp(6 251) rep(rexp(25,1),25
T25N50 rexp(1250,5/30) rexp(1250,10/4 Q rexp(1250,20/50) rexp(1250,1) rep(rexp(50,1),25
T50N5 rexp(250,5/30) rexp(250,10/4 rexp(250,20/50) rexp(250,1) rep(rexp(5,1),50)
T50N10 rexp(500,5/30) rexp(500,10/4 rexp(500,20/50) rexp(500,1) rep(rexp(10,1),50
T50N25 rexp(1250,5/30) rexp(1250,10/4 Q rexp(1250,20/50) rexp(1250,1) rep(rexp(25,1),50
TS0NS0 rexp(2500,5/30) rexp(2500,10/4 0 rexp(2500,20/50) rexp(2500,1) rep(rexp(50,1), 50

Note: rexp is the function to simulate exponential random sample in R software
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Performance Measures

The absolute bias (B
was estimated over 1000 iterations is defined

by

ap=) Of parameters £

1000

Bavs(Bi) =3 ). Bl (12)

The adjusted coefficient of multiple deter-

mination [R :

= J-} over r iterations is defined
by

Results and Discussion

1 ~\2
st ),

1 12
—2° - 5)

The root mean square error (RMSE) over r
iterations is defined as

Rc:ZLdj =1-

(13)

RMSE(B;) = (14)

where f, ,k =1,2,3 indicates the k"

parameter being estimated forj=1, 2,3, ..
., 1000 (number of iterations).

Table 3: Absolute Bias of Normal and Non-Normal Error PLM Estimatedff,

Absolute Bias of

Absolute Bias of

Dimension Normal Error PLM Estimated 8, Non-Normal Error PLM Estimated 4
Within Pooling Between First Diff. Within Pooling Between First Diff.

T10N5 0.0225 16.8115 31.8940 3.0158 2.9957 22.0263 22.6697 0.0046
T10N10 0.0159 16.8710 16.7422 3.0115 0.0151 18.9975 19.4813 2.9955
T10N25 0.0109 16.9580 16.4858 2.9958 0.0087 19.0308 19.1435 2.9985
T10NS0 0.0081 16.9223 16.0995 2.9979 0.0061 18.9888 19.1043 2.9951
T25N5 0.0172 17.0931 33.5552 3.002 0.0119 18.9305 20.6377 2.9992
T25N10 0.0095 16.8847 18.2966 2.9959 0.0092 19.0269 19.5346 2.9987
T25N25 0.0066 16.9324 16.0447 3.0012 0.0054 19.0084 19.0369 3.0004
T25N50 0.0045 16.9409 16.1903 2.9994 0.0037 19.0235 19.0495 3.0006
T50N5 0.0102 16.9309 52.5558 2.9972 0.0084 19.059 26.6624 3.001

T50N10 0.0075 16.9583 23.7461 2.9992 0.0061 18.9649 19.7816 3.0003
T50N25 0.0046 17.0258 18.5438 2.9998 0.0035 19.002 18.742 3.0000
T50N50 0.0037 16.9762 16.0517 2.9999 0.0026 18.9855 18.9551 3.0002

Note: Within is more efficient, follow by First Difference at normal and non-normal error GFGLS

estimated 8,

Table 3 shows that within estimator have the
lower value at each sample size; this implies
that it is more efficient, follow by First
Difference at both normal and non-normal

error PLM estimated f3,. The performance

of within and the other estimators are as also
shown graphically in figures 1 and 2 below
for normal and non-normal error PLM
estimated.
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Table 4: Absolute Bias of Normal and Non-Normal Error GFGLS Estimated ()

Absolute Bias of Absolute Bias of

Dimension Normal Error GFGLS Estimated g, Non-Normal Error GFGLS Estimated g,

Within Pooling Between First Diff. Within Pooling Between First Diff.

T10N5 0.0225 16.8115 39.5511 3.0158 0.0204 19.0263 39.5511 2.9954
T10N10 0.0159 16.871 40.463 3.0115 0.0151 18.9975 40.463 2.9955
T10N25 0.0109 16.958 39.192 2.9958 0.0087 19.0308 39.192 2.9985
T10N50 0.0081 16.9223 40.2633 2.9979 0.0061 18.9888 40.2633 2.9951
T25N5 0.0172  17.0931 39.7801 3.002 0.0119 18.9305 39.7801 2.9992
T25N10 0.0095 16.8847 40.1192 2.9959 0.0092 19.0269 40.1192 2.9987
T25N25 0.0066 16.9324 41.0657 3.0012 0.0054 19.0084 41.0657 3.0004
T25N50 0.0045 16.9409 40.0217 2.9994 0.0037 19.0235 40.0217 3.0006
T50N5 0.0102  16.9309 39.2341 2.9972 0.0084 19.0590 39.2341 3.0010
T50N10 0.0075 16.9583 40.1257 2.9992 0.0061 18.9649 40.1257 3.0003
T50N25 0.0046  17.0258 39.9748 2.9998 0.0035 19.0020 39.9748 3.0000
T50N50 0.0037 16.9762 40.2959 2.9999 0.0026 18.9855 40.2959 3.0002

Note: Within is more efficient, follow by First Difference at normal and non-normal error
GFGLS estimated [3;

Table 4 shows that within estimator have e of within and the other estimators are as
the lower value at each sample size; this  also shown graphically in figures 1 and 2
implies that it is more efficient, follow by First ~ below for normal and non-normal error
Difference at both normal and non-normal  GFGLS estimated.

error GFGLS estimated [3;. The performanc
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Fig.3:Absolute Bias of Normal Error GFGLS

Estimated

Absolute Bias of Non-Normal Error GFGLS

Estimated

Table 5: Absolute Bias of Normal and Non-Normal Error PLM Estimated

Absolute Bias of Absolute Bias of
Dimension Normal Error PLM Estimated f3, Non-Normal Error PLM Estimated 8,
Within  Pooling Between FD Within Pooling Between FD
T10NS 0.0130 1.0016 1.0855 1.0024 0.0315 0.9978 1.0557 0.9952
TION10 0.008 1.0019 1.0403 1.0021 0.0211 0.9994 0.9915 1.0001
T10N25 0.0049 1.0000 1.0006 0.9993 0.0138 0.9978 0.9901 0.9988
TI10NS0 0.0034 1.0010 1.0129 1.0000 0.0082 1.0000 0.9936 1.0013
T25N5 0.0072 0.9968 1.2027 1.0002 0.0176 1.0011 1.4609 0.9984
T25N10 0.0056 1.0018 1.0551 0.9998 0.0117 0.9992 0.9407 1.0008
T25N25 0.0034 1.0015 1.0448 1.0000 0.0084 1.0011 0.9944 1.0016
T25N50 0.0026 1.0011 1.0206 1.0002 0.0051 0.9988 0.9807 0.9998
TS0NS 0.0048 0.9970 1.5646 0.9989 0.0133 0.9979 1.5835 0.9985
T50N10 0.0029 1.0024 1.0545 1.0014 0.0079 1.0014 0.9808 1.0007
T50N25 0.0025 1.0008 1.0205 1.0008 0.0049 1.0013 1.0275 1.0014
TSONS0 0.0015 0.9999 1.0323 0.9992 0.0038 0.9999 0.9850 1.0000

Note: Within is more efficient at normal and non-normal error PLM estimated
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Table 5 shows that within estimator have the = performance of within and the other
lower value at each sample size; this implies  estimators are also as shown graphically in
that it is more efficient at both normal and  figures 1 and 2 below for normal and non-
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Table 6: Absolute Bias of Normal and Non-Normal Error GFGLS Estimatedf3,

Absolute Bias of

Absolute Bias of

Dimension Normal Error GFGLS Estimated f8, Non-Normal Error GFGLS Estimated £,

Within Pooling  Between FD Within Pooling Between FD
T10NS5S 0.0130 1.0016 1.6939 1.0024 0.0315 0.9978 1.6939 0.9952
T10N10 0.008 1.0019 1.1898 1.0021 0.0211 0.9994 1.1898 1.0001
T10N25 0.0049 1.0000 1.0451 0.9993 0.0138 0.9978 1.0451 0.9988
T10N50 0.0034 1.0000 1.0086 1.0000 0.0082 1.0000 1.0086 1.0013
T25N5 0.0072 0.9968 2.7366 1.0002 0.0176 1.0011 2.7366 0.9984
T25N10 0.0056 1.0018 1.2320 0.9998 0.0117 0.9992 1.2320 1.0008
T25N25 0.0034 1.0015 0.9622 1.0000 0.0084 1.0011 0.9622 1.0016
T25N50 0.0026 1.0011 0.0048 1.0002 0.0051 0.9988 0.9688 0.9998
T50NS5S 0.0048 0.997 1.9179 0.9989 0.0133 0.9979 1.9179 0.9985
T50N10 0.0029 1.0024 1.112 1.0014 0.0079 1.0014 1.112 1.0007
T50N25 0.0025 1.0008 1.0298 1.0008 0.0049 1.0013 1.0298 1.0014
T50N50 0.0015 0.9999 0.9749 0.9992 0.0038 0.9999 0.9749 1.0000

Note: Within is more efficient at normal and non-normal error GFGLS estimated 3,
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Table 6 shows that within estimator have the

performance of within and the other

lower value at each sample size; this implies  estimators are also as shown graphically in

that it is more efficient at both normal and

non-normal error GFGLS estimated . The

Fig.7:Absolute Bias of Normal Error GFGLS

Estimated

figures 1 and 2 below for normal and non-

normal error GFGLS estimated

Fig.8:Absolute Bias of Non-Normal Error GFGLS

Estimated

Table 7: Absolute Bias of Normal and Non-Normal Error PLM Estimated

Dimension Absolute Bias of Absolute Bias of
Normal Error PLM Estimated 83 Non-Normal Error PLM Estimated 83
Within  Pooling  Between FD Within Pooling Between FD
T10N5 0.0130 1.0016 1.0855 1.0024 0.0315 0.9978 1.0557 0.9952
T10N10 0.0080 1.0019 1.0403 1.0021 0.0211 0.9994 0.9915 1.0001
T10N25 0.0049 1.0000 1.0006 0.9993 0.0138 0.9978 0.9901 0.9988
T10NS50 0.0034 1.0010 1.0129 1.0000 0.0082 1.0000 0.9936 1.0013
T25N5 0.0072 0.9968 1.2027 1.0002 0.0176 1.0011 1.4609 0.9984
T25N10 0.0056 1.0018 1.0551 0.9998 0.0117 0.9992 0.9407 1.0008
T25N25 0.0034 1.0015 1.0448 1.0000 0.0084 1.0011 0.9944 1.0016
T25N50 0.0026 1.0011 1.0206 1.0002 0.0051 0.9988 0.9807 0.9998
T50NS5S 0.0048 0.997 1.5646 0.9989 0.0133 0.9979 1.5835 0.9985
TS50N10 0.0029 1.0024 1.0545 1.0014 0.0079 1.0014 0.9808 1.0007
T50N25 0.0025 1.0008 1.0205 1.0008 0.0049 1.0013 1.0275 1.0014
T50NS50 0.0015 0.9999 1.0323 0.9992 0.0038 0.9999 0.985 1.0000

Note: Within is more efficient at normal and non-normal error PLM estimated



