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Abstract 
In this paper, a mathematical model of stratified geophysical fluid flow over variable bottom topography 

was derived for shallow water. The equations are derived from the principles of conservation of mass and 

conservation of momentum. The force acting on the fluid is gravity, represented by the gravitational 

constant g . A system of six nonlinear partial differential equations was obtained as the model equations. 

The solutions of these models were obtained using perturbation method. The presence of the coriolis force 

in the shallow water equations were shown as the causes of the deflection of fluid parcels in the direction 

of wave motion and causes gravity waves to disperse. As water depth decreases due to varied bottom 

topography, the wave amplitude were shown to increase while the wavelength and wave speed decreases 

resulting in overturning of the wave. The results are presented graphically. 

 

Keywords: Bottom topography, coriolis force, geophysical fluid, series solution, shallow water equations, 

stratification.
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Introduction 

Stratified fluids are very present in 

nature, present in almost any heterogeneous 

fluid body. Examples include thermal 

stratification of reservoirs and oceans, salinity 

stratification in estuaries, rivers, groundwater 

reservoirs, and oceans, heterogeneous mixtures 

in industrial, food, and manufacturing 

processing, density stratification of the 

atmosphere and many others. In the presence of 

gravity, these density differences have a 

dramatic impact on the dynamics and mixing of 

heterogeneous fluids. For instance, thermal 

stratification in reservoirs can reduce the 

vertical mixing of oxygen to the point that 

bottom water becomes anoxic through the 

action of biological processes. Preventing, 

predicting, and solving such reservoir problem 

requires an understanding of the dynamics of 

stratified fluids. Therefore a stratified fluid is 

one in which the fluid density   is a function 

of space  zyx ,,  and time t  . The term 

stratification refers to the variation in the 

density field. Density differences arise through 

many sources. These can include differences in 

temperature, dissolved phases (solids, liquids, 

and gases), suspended solids, and pressure 

differences. The development of layers within 

the profile of a water body is a common 

phenomenon of stratification, (Pedlosky, 

1987). 

There are vast numbers of publications 

covering the different fields of classical 

geophysical fluid dynamics. General reviews 

and background information may be found in 

several textbooks; (Gill 1982; Mellor 1996; 

Pedlosky 1987 and Perks 1988). In the present 

context, with emphasis on more local scale 

geophysical flows, we may consider the most 

relevant literature in waterly flows as follows: 

for local waterly flows, analysis and laboratory 

experiments may be found in (Boyer and 

Davies 2000, Riley and Lelong 2000), while 

modeling and applications ranging from local 

tidal flow to circulations in various restricted 

waters are given in (Moe et al., 2002). 

Dellar and Salmon (2005) derived an 

extended set of shallow water equations that 

describe a thin inviscid fluid layer above fixed 

topography in a frame rotating about an 

arbitrary axis and also derived models that treat 

the ocean or atmosphere as a  stack of layers 

with variable thickness. Within each layer, the 

density is either assumed to be uniform or may 

vary horizontally due to temperature gradients.  

According to Karelsky et al. (2000), the 

generalization of classical shallow water theory 

to the case of flows over an irregular bottom. 

They showed that the simple self-similar 

solutions that are characteristic for the classical 

problem exist only if the underlying surface has 

a uniform slope. 

A mathematical simulation to 

determine the water velocity in the Lake 

Mariut, taking into consideration its 

concentration and the distribution of the 

temperature along it, by applying the fractional 

steps method for the numerical solution of the 

shallow water equations was developed in 

(Abd-el-Malek et al., 2007).  The 2D shallow 

water equations was used to describe water 

flows with a free surface under the influence of 

gravity (with gravitational acceleration ) and 

the Coriolis force due to the earth's rotation 

with angular velocity, (Vallis, 2006). The 

shortcoming of the model is that it does not take 

into account the density stratification which is 

present in the geophysical flow. Iornumbe et 

al.,(2020) considered the model of the bottom 

topography of a geophysical fluid flow in the 

presence of Coriolis force, without 

stratification and a system of three  nonlinear 

partial differential equations in two dimensions 

was modelled and solved using the  

perturbation method. Since stratified fluids are 

very present in nature, present in almost any 

heterogeneous fluid body, therefore, we 

considered it in this paper. 

In this paper, a mathematical model for 

the stratified geophysical fluid flow over 

variable bottom topography is derived taken 

into account the density stratification which is 

present in the geophysical flow and is an 

extension of the work of Iornumbe et al. 

(2020). 
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Model Formulation  

Model Assumptions 

In formulating the models, we make the 

following assumptions: 

1. The flow is predominantly horizontal, and 

the vertical acceleration is small compared 

to the gravity acceleration. 

2. The Cartesian coordinates x , y and z  will 

be used, with z  measured vertically 

upward 

3. The velocity components in the directions 

of increasing x , y and z  will be denoted by 

u , v and w  

4. Take the  yx,  horizontal plane as being 

parallel to the surface of the still water, and 

the depth of the water at a given point as 

  0;;  tyxhh .  

5. We denote velocity in the -direction as 

 tyxuu ;;  and the velocity in the y-

direction as  tyxvv ;; . While the plane 

 0z  can be chosen arbitrarily, it is 

usually positioned at mean water level. 

6. Measuring down from this plane, the 

bottom of the harbour is at depth

 yxz , . The equation  yxz ,  is 

the equation for the bottom surface, also 

known as the variable bottom topography 

or bathymetry, the depth of which is usually 

assumed to vary with x  and y . 

7.   The stratified fluid is one in which the fluid 

density   is a function of space  zyx ,,  

and time t   

 

 

 

Model Equations 
According to Iornumbe et al. (2020); 

the momentum and Continuity equation for the 

two-dimensional shallow water flow model 

taking into account the effects of topography 

and the Earth’s rotation was described as  

below: 

The momentum equations in the two 

directions are;  
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And the Continuity Equation as; 

   
0















y

hv
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We now consider the dynamics of 

multiple layers of fluid stacked on top of each 

other. This is a crude representation of 

continuous stratification, but it turns out to be a 

powerful model of many geophysical 

interesting phenomena. The pressure is 

continuous across the interface, but the density 

jumps discontinuously and this allows the 

horizontal velocity to have a corresponding 

discontinuity. In each layer pressure is given by 

the hydrostatic approximation, and so 

anywhere in the interior. We can find the 

pressure by integrating the hydrostatic 

approximation down from the top. Thus, 

hydrostatic approximation is,  

g
dz

dp
       4

 

 
 

x
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Figure 1: The multilayer stratified shallow water system. The layers are numbered from the top 

down. The coordinates of the interfaces are denoted by  , and the layer thicknesses ih .  

 

Integrating equation  4  from 
0

 to z 

 
z

dzgdp
0

  

 011   zgp
 

 

 zgp  011       5 

 

For the second layer, integrating from  0  to 1  

and  1  to z  we have 

 
11

0
2






z
dzgdzgp  

   zggp  121012   

 

gzggp 2111012      6
 

where  

 

1

12
1



 
 gg . These results obtain 

similarly for other levels. The term involving 

z  is irrelevant for the dynamics because only 

the horizontal motion is considered. Omitting 

this term for the two layered model gives the 

dynamical pressure as; 









111012

011





ggp

gp
     7 

i  can be summed from the top down; hence  

bhh   210  and bh   21  

Therefore the pressure in the two layers’ 

system can be express as; 

 

   




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bb

b

hghhgggp

hhggp
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211211111012

211011  8 

 

Finally, the mass conservation equation 

for each layer has the same form as, 

nn
n uh

Dt

Dh
.       9 
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Figure 2: The two layered- stratified shallow water system with varied bottom topography. A fluid 

of density 1  lies over a denser fluid of density 2 .  

 

For three layer model, pressure can be given as; 
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   10

 
 

with  







Ni

ni

ibi h
1

 , 

where N  is the nth  layer model, and “ n ” is the position of the layer in the multiple layers system. 

Therefore for the nth layer model, the dynamical pressure is given as; 

i

n

i

iin gp  





1

0

         11 

where   

 

i

ii

i gg


 
 1       and taking 00   

Therefore the two-layer models of geophysical fluid flows over variable topography are given by 

combining  1 ,  2 ,  3 and  8   
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        (12) 

 

Hence the model is complete for the six 

variables 1h , 1u , 1v , 2h , 2u  and 2v  such that the 

x axis is taken eastward and the y axis is 

taken northward, with u  and v  the 

corresponding velocity components, 

respectively, g  stands for the gravitational 

constant, sin2f  is the Coriolis 

parameter,   is the angular velocity of the 

earth rotation,   is the geographical latitude of 

the earth origin coordinate and  fufv ,   

represents the Coriolis acceleration which is 

produced by the effect of rotation. 

 

3. Method of Solution 

We will consider the model equations 
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with the initial and boundary conditions 
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Equation  c  in  13  can be written as 
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Equation  f  in  13  can be written as 
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Equation  a  in  13  can be written as: 
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Using   15  in  17  , we obtain 
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Equation  b  in  9  can be written as: 
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Using   15  in  19  , we obtain 
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Equation  d  in  13  can be written as: 
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    (21) 

Using   15  in  21  , we obtain 
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       (22) 

Equation  e  in  13  can be written as: 
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Using   15  in  23  , we obtain 
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       (24) 

Now let afgf  ,10  

Suppose the solution  hvu ,,  can be expressed in series form as: 

     

     
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           (25)

 

Substitute  25  into  15 ,  16 ,  18 ,  20 ,  22 and  24  and compare the powers of f .  

Now substituting   25  into  15  yields: 
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Substituting   25  into  16 , we have, 
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Substituting   25  into  18 , we have, 
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      (28) 

Substituting   25  into  20 , we have, 
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             (29) 

Substituting   25  into  22 , we have, 
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     (30)  

Substituting   31  into  30 , we have, 
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        (31) 

Thus comparing the coefficients of the powers of f ,  we have; 
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Integrating   32  with respect to t , we have; 

  (44) 

Similarly, Integrating   33  ,  34 , and  35 with respect to t  we have; 

  010 ,, vtyxv               (45) 

  020 ,, utyxu              (46) 

  020 ,, vtyxv       (47) 

 Hence, equation  36  reduces to; 

    xmeyxh
dt

dh yxs  sin0,,,0
22

10
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Integrating this with respect to t  , we have; 
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10     (48) 

Similarly, equation  43  reduces to; 
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dt
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20   

So that integrating this with respect to t  , we have; 

  xtyxh  sin1,,20                 (49) 

Also, equation  38  reduces to; 
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Integrating this with respect to t ,  we have; 
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Equation  39  reduces to; 
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Integrating this with respect to t  , we have; 
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Equation  40  reduces to; 
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Integrating this with respect to t ,  we have; 
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Equation  41  reduces to; 
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Therefore; 
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Equation  43  reduces to; 
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Therefore; from equation  25  
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Therefore, 
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 which implies that,  
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Similarly, 

       tyxfhtyxhtyxh ,,,,,, 21202       

which implies that 
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Results and Discussion 

Using Maple software, the following results were obtained graphically to help interpret the 

result of the modeled equations. Thus; 

 

 
 

 

 



Nigerian Annals of Pure and Applied Science Vol. 3 Issue 3, 2020   |127 

 
 

Figure 1 and 2 shows the flow rate in  

the stratified fluid flow of two layers  tyxu ,,1  

and  tyxu ,,2  where,  tyxu ,,1  is the rate of 

flow in the first layer and  tyxu ,,2  in the 

second layer. At 1.0f  the flow  velocity is 

slowly varying but increases gradually with 

time in first and second layers, although faster 

in the first layer than in the second. At 5.0f  

the  flow velocity increases rapidly as time 

increases both in the first and second layers and 

these appeard faster when compared to 1.0f

. At  1f  the flow velocity is very high and 

increases with time and these velocities are 

greater than what obtained in both 1.0f  and 

5.0f . This shows that the flow rate 

 tyxu ,,2 in the second layer which is denser 

than that in the first layer is slow as compared 

to the flow velocity  tyxu ,,1 . Furthermore, 

the result shows that in in all cases, the higher 

the force due to rotation, the faster the rate of 

flow. 
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The graphs of figure 3 & 4 above shows 

the flow velocity  tyxu ,,1  and  tyxu ,,2  in 

the horizontal x direction  in the stratifiedd 

fluid of two layers. The figures show a flow 

system characterized by disordered changes 

in flow velocity. The velocities are varying in 

space due to turbulent fluctuations and the 

deviation of the set of haphazard velocity 

fluctuations with different levels of turbulence. 

For the top layer, we may note that sunlight, 

wind and other environmental factors may 

increase the temperature of the upper layer 

thereby changing the density of it and thus 

making the flow faster than that of the lower 

layer.These correspond to the flow at the free 

surface of a body of shallow water under the 

force of gravity, or to the flow below a 

horizontal pressure surface in a fluid. A surface 

wave travels at the free surface of a fluid. The 

maximum velocity of the wave and the 

maximum displacement of fluid particles occur 

at the free surface of the fluid. To be noted is 
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the fact that there is more congestion in the 

second layer as there are more obstructions in 

the dowmward part than in the upper part and 

the density is denser there than in the upper part 

. If there is any barrier at the water bed, the 

effect is felt in the second layer more than in 

the upper layer. Since the second layer is closer 

to the bed the rate of randomness and 

fluctuation is higher there than that at  the 

surface layer. The flow in this layer is known 

as internal wave which travels within the 

interior of a fluid. The maximum velocity and 

maximum amplitude occur within the fluid or 

at an internal boundary (interface) as internal 

waves depend on the density-stratification of 

the fluid.
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Figure 5 and 6 also illustrates  the flow velocity 

 tyxu ,,1  and  tyxu ,,2  in the y  direction 

that has constant motion. At 1.0f , the flow 

is not experinced at all points in y .direction. 

However, when the force due to rotation is

5.0f  and 1f  the constant flow velocity 

of sm /60 and sm /120  were experinced at 

different points for  tyxu ,,1  and for that of 

 tyxu ,,2 , the constant flow velocity of 

sm /50 and sm /100  were also experienced. 

This shows that, the flow velocity is high on the 

upper layer than in the down layer

. 
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Figure 7&8 shows the flow velocity of 

the first layer  tyxu ,,1   and  tyxu ,,2  in the 

horizontal x direction and at different times 

t . The flow is irregular and random at different 

points in time and space. The figures described 

an overturned (that is inverted) character. The 

nature of the overturning regions is strongly 

dependent on the strength of stratification 

which caused vertically layered flow structures 

in stratified turbulent fluid thereby producing 

local shear instabilities due to sharp vertical 

gradients and subsequently overturning. 

 

 
 

 

Figure 9 and 10 illustrates the flow velocity 

 tyxu ,,1  and  tyxu ,,2  in the stratified fluid 

in y direction at different times. Different 

colour indicates differents value of f  showing 

a plane with deformable boundary within them.  
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Figure 11 shows the flow velocity  tyxu ,,1  in 

the horizontal yx  directions of the stratified 

flow. The surface of the flow thus formed is 

called a free surface because the flow boundary 

is freely deformable in contrast to the solid 

boundaries. The effect of the bottom 

topography causes the water to shoot up above 

the normal water surface. Figure 12 shows the 

flow velocity  tyxu ,,2  in the second layer of 

the stratified fluid where the fluid density is 

higher than in the first layer. The nature of 

overturning regions is shown to be strongly 

dependent on the strength of stratification and 

the bottom topography. 
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Figure 13&14 shows retardation of the flow 

rate of the velocity with time at different values 

of f . For  1.0f  we have a slowly varying 

retardation as time increases. At 5.0f  the 

retardation is faster but slower than that of 

1f  as time increases. This shows that when 

the force due to rotation is high the rate of flow 

velocity  tyxv ,,1  and  tyxv ,,2  on the surface 

in the horizontal y direction will be very fast 

and may reduce to zero. 
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Figure 15&16 shows the variation of flow 

velocity  tyxv ,,1  and  tyxv ,,2  in the 

horizontal x direction with different values 

of f .The flow in the second layer which is 

closer to the bottom  topopgraphy have more 

obstructions that causes loss in momentum than 
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in the first layer. The obstructed waves inturn 

become barriers to other incoming waves 

which then causes more congestion in the 

second layer than in the first layer thereby 

decreasing the rate of flow velocity across the 

water bed and thus resulting in the 

disorderliness and turbulence in flow as shown. 
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Figure 17 shows the variation of flow 

velocity  tyxv ,,1  of the first layer of fluid in 

the yx  directions and at different values of 

f  and this shows a plane surface flow in 2-D 

directions. The negative velocity values 

indicates that the flow is imaginary. Figure 18 

shows the variation of the flow velocity 

 tyxv ,,2  of the second layer of fluid in the 

yx  directions and at different values of f  

which demonstrates that due to the obstruction 

of  waves both on the bottom and the  side 

boundaries respectively are barriers to other 

incoming waves and thus causes an interwoven 

of the waves and overturn in the flow.  

 

Conclusion 
We were able to derive the 

mathematical models for the stratified 

geophysical fluid flow over variable bottom 

topography. We obtained a system of six non-

linear partial differential equations in two-

dimensions with Coriolis force and bottom 

topography included and these were solved 

using perturbation method.  The presence of the 

Coriolis force in the shallow water equations 

were shown to cause the deflection of fluid 

parcels in the direction of wave motion and 

causes gravity waves to disperse. As water 

depth decreases due to bottom topography, the 

wave amplitude increases, the wavelength and 

wave speed decreases resulting in overturning 

of the wave. The effect of the Coriolis force is 

seen in the oscillatory motion in the direction 

of wave motion which causes gravity waves to 

disperse.  

Fluids in the geophysical flow are 

generally in motion. The surface resistance in 

the planetary boundary layer or the wind driven 

force of the rivers and oceanic surface layer 

means that the motion varies with amplitude. 

Despite the stable density stratification, the 

velocity varies adequately fast with height, 

destabilizing the flow and resulting in violent 

overturning of the density surfaces. 

Geophysical fluid flow with varied bottom 

topography strongly influences stratified flows 

because fluid parcels are typically deflected in 

both the horizontal and vertical direction by the 

obstacle. This behavior is parameterized by the 

Froude number. The Froude number is a 

measure of the likelihood of the flow to be 

deflected vertically against the density 

stratification.  However, the response of a 

stratified flow to topography is also dependent 

upon the shape of the obstacle, but for simple 

two dimensional obstacles, our study has found 

regimes in which violent overturning of density 

surfaces can occur. 

In addition, the vertical deflections of 

fluid parcels generate internal waves which can 

propagate vertically in the stratified flow. 

However, owing to the variation of velocity 

and stratification with height in the shallow 

water, it is likely that these waves will break 

and form regions of turbulent overturning at 

some level. 
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