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Abstract

We employed the exact quantization rule to obtain closed form expression for the bound state energy
eigenvalues of a molecule in quadratic exponential-type potential. To deal with the spin-orbit centrifugal term
of the effective potential energy function, we have used a Pekeris-type approximation scheme, we have also
obtained closed form expression for the normalized radial wave functions by solving the Riccati equation with
quadratic exponential-type potential. Using our derived energy eigenvalue formula, we have deduced
expressions for the bound state energy eigenvalues of the Hulthén, Eckart and Deng-Fan potentials,
considered as special cases of the quadratic exponential-type potential. Our deduced energy eigenvalues are in
excellent agreement with those in the literature. We have computed bound states energy eigenvalues for six
diatomic molecules viz: HCI, LiH, H,, SeH, VH and TiH. Our results are in total agreement with existing
results in the literature for the s-wave and in good agreement for higher quantum states. By solving the Riccati
equation, we have obtained normalized radial wave functions of the quadratic exponential-type potential, our
results show higher probabilities of finding the molecule in the region 0.1 <y <0.2
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Introduction

In the subject of wave mechanics, much
emphasis is placed on the wave functions of a
system owing to the fact that all the required
information about the system are derivable from
the wave functions (Eyube, Jabil and Umar,
2019a; Qiang and Dong, 2009; Jia, Liu and
Wang, 2008). However, obtaining the wave
function of a system requires solving the
Schrodinger equation, a second order
differential equation for a given potential energy
function. The solution of the Schrédinger
equation is either exact (Eyube, Sanda and Jabil,
2019b; Ikot, Awoga, Hassanabadi and
Maghoodi, 2014; Hamzavi, Rajabi and
Hassanabadi, 2012) or inexact (Khordad and
Mirhosseini, 2015; Ikhdair and Sever, 2009) for
the quantum state nl, where n is the principal
quantum number and ¢ is the principal angular
momentum quantum number. The Coulomb and
harmonic oscillator potentials are two well-
known potential energy functions which have
exact solutions (Hitler et al., 2017) for all values
of £ (£ =0 as well as £ # 0), on the other hand
fewer other potential energy functions have
exact solutions only for state £ = 0, such
solutions are often referred to as s-wave
solutions (Tsaur and Wang, 2014; Serano, Gu
and Dong, 2010). Most of the known potential
energy functions have no exact solutions with
the Schrodinger equation, therefore, for these
class of potentials, approximate numerical
(Nasser, Abdelmonem and Abdel-Hady, 2012;
Lucha and Schoberl, 1999) or analytical (Yanar,
Tas, Salti and Aydogdu, 2020; Okorie, Ikot,
Chukwuocha and Rampho, 2020; Gu and Dong.
2011) solutions are acceptable. There are two
steps involved in arriving at an analytical
solution, first, an approximation scheme
(Falaye, Ikhdair and Hamzavi, 2015; Greene
and Aldrich, 1976; Pekeris, 1934) must be
applied on the centrifugal term of the
Schrodinger equation, secondly the solution
method to be used to solve the resulting
equation. It must be emphasized that no two
different approximation schemes and/or two
different solution methods give the same
analytical solutions, thus, the better analytical
solution is the one which approximates more
closely to a corresponding numerical solution
(Khodja et al., 2019; Eyube et al., 2019c¢; Tang,
Liang, Zhang, Zhao and Jia., 2013). Various
solution methods have been proposed and used
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to solve the Schrodinger equation, some of these
methods include: parametric Nikiforov-Uvarov
method (Khordad and Mirhosseini, 2015; Ikot,
Awoga, Hassanabadi and Maghoodi, 2014),
exact and proper quantization rules (Qiang, Gao
and Zhou, 2008; Dong, Morales and Garcia-
Ravelo, 2007; Ma and Xu, 2005), factorization
method (Pahlavani, Rahbar and Ghezelbash,
2013), path integral method (Khodja, et al.,
2019) and ansatz solution method (Taskin and
Kocal, 2010; Qiang and Dong, 2009). The
quadratic exponential-type potential (QEP) is a
useful analytical model in the description of
molecular and vibrational dynamics of diatomic
molecules (Okorie, Ikot, Onyeaju and
Chukwuocha, 2018; Ikot et al., 2014), it has
wide applications in chemical physics,
molecular, atomic and solid state physics. In a
previous study, the arbitrary (-state solution in
D-dimensions of the Schrodinger equation with
QEP was obtained by Ikot et al. (2014) within
the frameworks of Nikiforov-Uvarov method,
the Greene and Aldrich approximation scheme
was used to deal with the centrifugal term of the
effective potential, in their result, special cases
of Woods-Saxon, Hulthén and generalized
Morse potentials were considered. In a related
work, Okorie et al. (2018) solved the
Schrédinger equation in D-dimension via ansatz
solution method, the Greene and Aldrich
approximation scheme was also applied on the
centrifugal term of the effective potential, they
used their result to explore the thermodynamic
properties of this potential. Ezzatpour and
Akbarieh (2016) obtained the analytical
solution of Klein-Gordon equation with the
QEP. Motivated by the successes in the
application of exact quantization rule as a
solution method of the Schrédinger equation
(Falaye et al., 2015; Ikhdair and Sever, 2009),
we are encouraged to solve the radial
Schrodinger equation with QEP to obtain closed
form expressions for bound state energy
eigenvalues and radial wave functions within
the frameworks of exact quantization rule, to
deal with the centrifugal term, instead of the
previously used Greene and Aldrich
approximation scheme by other authors, we will
employ the Pekeris-type approximation scheme
which has proved to be better approximation
model over the Greene and Aldrich
approximation scheme (Yanar et al., 2020),
which to the best of our knowledge has not been
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considered by other researchers, we will use our
results to deduce closed form expressions for the
bound state energy eigenvalues and radial wave
functions of Eckart, Hulthén and Deng-Fan
potentials, we will compare our results with
those in the literature where they exist.

Theoretical Formulation
Review of the concepts of exact quantization
rule

Here we give a summary of the
necessary concepts of exact quantization rule,
the full details are given by Ma and Xu (2005).
The exact quantization rule was proposed to
solve the one-dimensional Schrodinger
equation viz.

\IIZZ(Z)Jrkfz(Z)Wne(Z):O 1

where prime denotes derivative with respect to
the argument, z and k« (z) is the linear
momentum of the system, itis given by:

O e, 1, 0 z

with p as the mass of the system, Ev» is the energy
eigenvalue, Ve (z) is the effective potential
energy function which is a piecewise continuous
real function of z. Eq. (1) can be reduced to the
well-known Riccati nonlinear differential
equation given by:

, 2
(O (Z) +h_l; {Enz _V;ﬁ(Z)}"'(Pje (Z):O (3)

where the phase angle, ¢, (Z%\If ne (Z)/‘If nt (Z)
is the logarithmic derivative of the wave
function ya«(z). Due to Sturm-Liouville
theorem, @«(z) decreases monotonically with
respect to z between two turning points
determined by the equation Ene 2>Ves(z).
Particularly, increases across a node of the wave
function, ya(z) where, Ene 2Vei(z), @ni(2)
decreases to oo— and jumps to oo+ and then
decreases again. By carefully studying the one-
dimensional Schrodinger equation, the exact
quantization rule was proposed (Ma and Xu,
2005) as:

T, @x =N+ ;q)nﬁ(){dkmz (2)}[“"""f(z)}_ldz 4

dz
where z,,andz,, aretwo turning points

determined by solving the equation
E, =V,() and z,,<z,.N isthe

nt

number of nodes of ¢,, (z) in the
neighborhood of £,, >V, (z) and it is larger

by one than the number of nodes #n of the

wave functiony ,, (z), clearly, N =n+1. The

first term, Nw relates to the contr ibution
from the nodes of the wave function, and the
second term is referred to as the quantum
correction. The quantum correction is
independent of the number of nodes for the
exactly solvable systems (Falaye et al., 2015;
2007), therefore, it can be
evaluated for the ground state (7 =0), this

Dong etal .,

can conveniently be represented by:

o - Fo o, o, ot O, s

dz d

In three dimensional spherical coordinates, the
exact quantization rule assumes the following

form:

L) N

dr

T Qar = m()[

In compact form, Eq. (6) can be written as:

I=Nn+Q. 7

where the momentum integral is given by:
1= fkn , (r)d r 8

and the quantum correction is:

”- MUV%’V(V)}VPM(FTW 9

dr

The Schrodinger equation (Okorie et al., 2020)
in three dimensions for a spherically symmetric
potential is given as:

(r)}unxr): E,u, () 10

u,, () is the radial wave function, E,, is the

energy eigenvalue and r is the separation

The effective quadratic exponential -type
potential

The effective quadratic exponential - type
potential (Okorie et al ., 2018; Ikot et al .,
2014) including the spin - orbit centrifugal
term is given by:



)_V(pe( +q)e +s) Lh?
°r 1

where p, g and s are adjustable constants, V),

V@ 11

2ur?

and J are the potential depth and screening
parameters respectively and L=/ (E + 1).
Exact solution of Eq.(10) with effective QEP
of Eq. (11) is limited only to s-wave
solutions. However, by employing suitable
approximation scheme to deal with the spin -
orbit term of the effective potential,
approximate analytical solution can be
obtained. In this article we will employ the
Pekeris-type approximation scheme (Tang et
al., 2014, Hamzavi et al.,2012), which has
proved to be better than the Greene and
Aldrich approximation scheme in solving the
Schrodinger equation with various
exponential-type potentials, the
approximation model is given as:

1 LS A
2 n S 1 (e5’—1)2 12

where n, k and A are adjustable parameters, thus,

1N

inserting Eq. (12) in Eq. (11), this gives:

r_V(pe +q¢é° +9) Ln® K A
s et +es,_1+(es,_l)z} I

using the transformation equation,
e’ =1/z+1 14

Eq. (14) transforms to:

V/,(z)fh—{ut ZHV (p+q+s)}z +E{LK+2H (2p+q)}z+—“[Ln+2”th]

15
Introduction of the following constants:
2
812=L7\,+:—2V0(p+q+s) 16
2ur,
J=Lk+ :20(2p+q) 17
2
e; =1Ln +M 18

allows Eq. (15) to be written in the more
simplified form as:

V,()=A4z+Bz+C 19

where

NAPAS Vol. 3 No 2, June, 2020 | 243

Azhzsf 20
2p

B:hzszz 5
2u
hZ 2

c=l* 22
2u

To establish the Riccati equation (Gu
and Dong, 2011; Dong et al., 2007), first we
need to determine the turning points by
imposing the requirement:

v, ()=E, 23
Substituting Eq. (19) in Eq. (23) leads to:

A22+BZ+C—EM:O 24

The turning points Zw« and Z.s (with 2,5 > Z,,4
which are roots Eq. (24) are given by:

B+B*-44(C-E,,)

- _ 25
ZnA 2A
and ~
ZnB:_B—\/B —4A(C-E,) 2
24

From Egs. (25) and (26), the sum and products
ofthese roots are:

B
ZM+an=—Z 27
C-E, -

ZnAZnB A

For the ground (0=n) state, Egs. (27) and (28)
giverespectively:

B
ZOA+ZOB=—Z 29
C-E,
Zo4 Zop = y 30

Using Eq, (2), the momentum of the system is
given by:

kng(z)z\/il—}j(EM—Azz—Bz—C) 31

In what will be required later, Eq. (31) can be
expressed in terms of the turning points as
follows,

ki (2)= \/2;1/1(6’ il _Zz_EZj 32

A A
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Using Egs. (27),(28) and (20) in (32), we find:
kné(Z):Sl\/(Z_ZnA)(ZnB_Z) 33

The derivative of Eq. (33) with respect to z is
given by:

k:m(z): €

_ 1
z Z(ZnA +Zn3)

\/(Z_ZnA)(ZnB _Z)

Since the ground state derivative of the
momentum will be needed for evaluating the
quantum correction, Eq. (34) gives for the
ground state (0=n), and using Eq. (29):

, +B/2A4
koe(Z): —€ =

\/(Z_ZOA)(ZOB -z

Using Eq. (3), the Riccati equation in three
dimensional spherical coordinates (Falaye ez al.,
2015)1s:

, 2
q)nl(r)—'_ h_tl {Enf

To obtain the corresponding Riccati equation in
terms of variablez, we substitute Eq. (14) in (36),
this results in the following first order nonlinear
differential equation given by:

34

) 35

eff (I" }+(pn[(r) 0 36

—82(1+z)(p[(z)+ (E -Az"-Bz- C)—Hp (z)=0 37

where we have used Eq. (19) to eliminate Vn/(z).
Eq. (37) gives for the ground state;

, 2
-9 Z(1+Z)(Poc(z)+h7'j(Ew —Az? —BZ—C)+(|)§,(Z):0 38

Since @w (z) has one zero and no pole, it has to
assume a linear form in z, for a trial solution, we
assume:

(POf(y): BSPARS) 39

C1 and C2 being constants, substituting Eq. (39)
in (38), get:

2
Sc](z+zz)+h—tl(Ew—CfAzZ7Bz)+6122272clczz+c22:0 40

(6 ¢ —2;:72/1+612)22+( ¢ —2;—23—261 czjy+

By equating corresponding coefficients of Z°, z
and 2’ respectively on both sides of Eq. (41), this
results in the following relations:

%(EW—C)H’ZZ=O 41

2u A
cf+6c1=L25812 42
h
2uB
8¢ —2¢c ::—2:822 43

szzzh_tl(c_Ew) 44

Therefore, solving for ¢' in Eq. (42), we
obtained:

c,=-0o 45
where

m§{1(yﬁﬁlj} 46

Clearly, Eq. (46) leads to;

8128(032—(0)% 47
From Eq. (43), we find:
2
¢, =245 48
2 20m

Now that both ¢' and ¢* have been obtained we
are in position to compute the various integrals
appearing in Eq. (7), starting with the quantum
correction, in terms of the variablez, Eq. (9) and
(14) give:

177 0/() dz
z;[ (pw () ) \z(1+z) ¥

Using Eq. (35) and (39) in (49), we have that:

Q_

-c,/c)(z+B/24) dz

6zM Z(1+Z) \/(Z ZOA)(ZOB Z)

Eq. (50) can be expressed as:

0=

50

0 _iT - ¢, B _(c]+cz)(2A B) dz
82| 204z 2¢40+z2) [ J€-2) €0 -2) 51

The integral given by Eq. (51) can be evaluated
by means of the following standard integral
(Falayeetal.,2015):

zn
4 dz

z:[ (P+QZ)\/@_ZnA)(ZnB _Z): \/Q)+QZHB)QJ+QZ"A) 32

application of Eq. (52) in (51) leads to the
following:

0 _Tcsl _¢,B Il_(cl+c2)(2A—B)12 53
2¢, A 2¢, 4
where
C-E c?
2 00
I =zy,20 = y =§ 54
Thus, we find:
€
L=— 55
G
similarly; we find:
2
L =14z, +zy5 +2,, Zop 56



upon substituting Eq. (29) and (30) in Eq. (56),
this gives:

B C-E

I =1-= - 57

A
By putting Eq. (42)—(44) in Eq. (57) we have:
2,2:1_6c12—201(:2 N 2022 E(c;Jrcz)2 58

¢, +0 ¢ ¢, +0¢, ¢ +0¢

so that:

I, = (cl2 +9 cl)?E g 59

¢ +c, c +c,

Substituting Eq. (55) and (59) in Eq. (53) and
eliminateicfrom Eq. (45), we have for the
quantum correction:

1+ -2
o dw

The other integral on the right hand side of Eq.
(7)1s given interms of variable z as:

0, =— 60
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g J' \/(Z 2,)(,5-2)

d 62
by z (1+Z) Y

In order to evaluate the integral in Eq. (62) we
use the following standard integral (Falaye et
al.,2015)

Therefore, by using the definite integral of Eq.
(63) and subsequently, Eq. (27) and (28) we

obtained,
s 81 C - En( \/
-1- +,/1
SR | o
It follows that, by substituting Eq. (60) and (64)
in the exact quantization rule expressed by Eq.

(7)andreplacing Nby n+1, get:
2
We} g —¢€2 +m
3 1 2 n 65

2u 2p |28% (o) 2

B C-E,
——+

I=

En€ =

I k, (Z (1 ) 61  Thus, by using Eq. (16), (17), (18) and (46) to
z(I+z
n eliminate 812 ’ 822 ) 832 and o respectively from
Putting Eq. (45) in Eq. (61), this gives: Eq. (65), we obtained the energy eigenvalues
of the QEP as:
2uVO(_ ) f(z+1)(k_ ) ’
400+ 1)x suv,
2 5% | 2n+1+ 1+ S(p+q+
£, = pr,+ LF NS |2 \/ 5T Tan P 66
2u 2u
2n+1+\/1 M(ﬁ;l)k SHVO L(p+q+s)
- 4
Radial wave function of the quadratic e — 2p A 69
==
exponential-type potential 8°n’
By solving the R iccati equation given £ = 2 ”Ij 70
by Eq. (37), one obtains thefunctiong,,(z), we 8%
also need to recover the radial wave function 6 — (C En/) 71

u,,(z). Consider the following transformation

relation on Eq. (37):

z
y= 67
1+z

and using the logarithmic definition of the phase
angle g, ,(z), we obtained:

v () v, )+ { aﬁ}un,@):o 68

2

y Yy
S
-y Uiy

where

Eq. (68) has solution (Eyube et al., 2019b) given
by:

”n/(y) ne (1 y) fn/(y)

where the constants 7, v and the function £, (y)
are chosen such that:

T =¢g¢ 73

72

v’ -v=g, 74
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and f,,(y) is the Gaussian hypergeometric
function given by:

fo (y)zzFl(—n,n+2r +2v;2t +1;y) 75

The normalization constant, N, is evaluated

from normalization condition, following Qiang
and Dong (2009), we find:

N, :(6—)2 76
M

with M given by
n!(n+v) F(n + 20)F(21)F(2t +1)

M=
(n +1 +U)F(n+21; +1)F(n+21: +2U)

2uze’

Results and Discussion

By choosing appropriate values for the
parameters p, g, s, n, k and A, we can use our
results for effective potential and energy
eigenvalues of QEP given by Egs. (13) and
(66) to deduce eftective potential and energy
eigenvalues of other potential models.

The Hulthén potential
If we choose p=0,q=-s=-Ze’§ and
V. =1, Egs. (13) yield:

Ze’d LK’
/,0)--280 {

2p

K A

_e+Dnnt | 8w’

2
/(0 +1
+ (SJ; )(X—K) 2n+1+ /1+7M@j1jx
— 5 79

nl —

Letting n =0, x =0 d’andi =87, Eq. (78)
and (79) reduces to the effective Hulthén
potential and the corresponding energy
eigenvalue derived by Jia ef al. (2008). In the
same manner, if we letn =8°d,, k =1 =5§"
in Egs. (78) and (79) respectively we get the
effective Hulthén potential and the energy
eigenvalues derived by Ikhdair (2009).

2 2 / ( ) 4
H H 2n+1+ 1+7M éjlx

The Eckart potential

By suitable choice of parameters, the Eckart
potential is considered here as a special case
of the QEP, choosing p=0, ¢=8 —a,
s=o and V7, =1, Eqgs. (13) and (66) give the

effective Eckart potential as

dr 2
o e Lh K A
I/eﬁ‘(r): Sr fr 5r + Sr 2 80
() B ) TR LR R )
and the energy eigenvalues of the Eckart potential as:
2ua z(£+1) 4£(z+1)x Sup
o)t wst | gt ¢.—x) 2n+1+\/1 R
nt — - -
2 2 4
" H 2n+1+\/1+4£(£j1)k+8gl%
) I/
Taking 1 =0, & =1/a,x =¢/a’ be very important in the description of

replacing 4 byi/a in Egs. (80) and (81)
reproduces the effective Eckart potential and

energy eigenvalues respectively as obtained
by Taskin and Kocal (2010)

The Deng-Fan potential
The Deng-Fan potential has been reported to

diatomic molecular energy spectra and
electromagnetic transitions (Diaf, 2014). If we

5
choose p = 1, g=—2¢ “, s =e"and W=D,

effective QEP given by Eq. (13) transforms
to the effective Deng-Fan potential viz:
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S,

Lh’
2p

-1
-1

K

r

82

dr

v, ()=D, [1— ¢

2 - + - A
e LT (65’_1)2
where D, is the dissociation energy and r, is the equilibrium bond length, it follows that by
substituting the values of these parameters in Eq. (66), the energy eigenvalues of the Deng-Fan

molecular potential can be deduced as:

2
2D, o) U )
s s 4£(f+1)x 8UD, (5. )
E,,[=De+£(£+21)nh —hza 2”+1+\/1 s Pt @) 83
u i
2n+1+\/1+4£(§j1)x+ 8;2[;) (e —1)
- 4
To test the accuracy of our results, we have _er (l_e_g ,6)3 ﬁ+e‘5 ,B) . 3™ (1_6_éi ,8)4 %6
used Eq. (83) to compute bound state energy 51} 8°r

eigenvalues of six diatomic molecules: HCI,
LiH, H>, SeH, VH and TiH. Following Tang e?
al. (2014), we have chosen the parameters 1, K
and A such that:

A O VR S R
_265r3(1—e’6r”)2(2+e’6’@ 665’ (1 —e” )

= 2
dr

The data in Table 1 (Oyewumi, Oluwadare,
Sen and Babalola, 2012) shows model
parameters of the diatomic molecules used in
our computation of bound state energy
eigenvalues.

Table 1: Spectroscopic parameters of selected diatomic molecules used in the study

molecule De (eV) re (A) 5 (A 1 (amu)
HCI 4.619061175 1.2746 1.8677 0.9801045
LiH 2.515283695 1.5956 1.1280 0.8801221
H> 4.7446 0.7416 1.9426 0.50391
SeH 2.25 1.776 1.41113 0.986040
VH 2.33 1.719 1.44370 0.988005
TiH 2.05 1.781 1.32408 0.987371

The results shown in Table 2 are
computed bound state energy eigenvalues for
HCI, LiH, H,, SeH, VH and TiH. To enable us
compare results with existing data in the
literature, we have included bound state energy
eigenvalues of the Deng-Fan potential obtained
within the frameworks of Nikiforov-Uvarov
(NU) via the improved Greene and Aldrich
approximation scheme. Comparison of the
present result (PR) and that obtained by NU
method shows excellent agreement for the case
of £ =0, both EQR and NU methods give exact
analytical solutions for the s-wave. However,
for the other states with £ # 0, approximation

schemes used contributes to the analytical
solutions, the results tends to be in good
agreement for higher quantum states. Figures 1
and 2 shows plots in atomic units (u=h=1) and
6 = 0.025, V, = 1 of normalized radial wave
functions (Fig 1a and 2a) given by Eq. (77) and
corresponding probability amplitude (b) given
by ‘unz(y)‘z in atomic units (Fig 1b and 2b) for
state 4d. The probability density measures the
likelihood of were the system can be located, in
Figures 1b and 2b, the plots show that the
probability is greatestin the region 0.1 <y <0.2
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Table 2: bound state energies (in eV) for HCI, LiH, H>, SeH, VH and TiH

state

HCl

LiH

H>

PR

NU

PR

NU

PR

NU

AW N =) O WD = O N —= O = O = O

0.201982172
0.208460872
0.590742124
0.597127567
0.960002027
0.966295369
0.978880787
1.310015915
1.316218292
1.328621793
1.347223909
1.641032731
1.647145259
1.659369075
1.677701697
1.702139403

0.201984174
0.204854248
0.590747827
0.593537612
0.960011044
0.962721591
0.968141645
1.310027865
1.312660203
1.317923855
1.325816775
1.641047243
1.643602379
1.648711644
1.656373023
1.666583499

0.103333625
0.108230843
0.302003040
0.306826349
0.490681252
0.495432293
0.504932694
0.669594907
0.674275270
0.683634354
0.697668878
0.838963132
0.843574355
0.852795199
0.866622457
0.885051328

0.103334650
0.105236729
0.302005955
0.303838653
0.490685861
0.492450759
0.495978997
0.669601019
0.671299648
0.674695388
0.679785205
0.838970564
0.840604402
0.843870601
0.848766203
0.855286782

0.349976783
0.390745131
0.996767785
1.036337565
1.580234480
1.618675505
1.695489068
2.104068759
2.141445176
2.216133717
2.328006349
2.571660549
2.608031385
2.680712650
2.789584050
2.934466410

0.349980221
0.364688765
0.996777053
1.010323238
1.580248366
1.592700793
1.617539648
2.104086156
2.115507769
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Figure 1 Normalized radial wave function (a) and robability density function (b) of QEP for 4d state
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Figure 2 Normalized radial wave function (a) and probability density function (b) of QEP, a = 40,

B =10.00005 for 4d state

Conclusion

In this article we have employed the
ideas of exact quantization rule and ansatz
solution method to obtain closed form
expressions for the bound state energy
eigenvalues and normalized radial wave
functions of a molecule in a quadratic
exponential-type potential, expressions for the
bound state energy eigenvalues of the Hulthén,
Eckart and Deng-Fan potentials were obtained
when considered as special cases of the
quadratic exponential-type potential. The
results in this article may be useful in areas of
solid state physics, atomic, molecular and
chemical physics.
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