
Introduction

The theory of stochastic differential 

equations has been a subject of study for a 

long time now. Complicated finite 

dimensional stochastic dynamics can now be 

modelled and understood through the use of 

stochastic calculus and the theory of sub-

martingales (Kloenden and Platen, 1992). 

Today stochastic differential equations has 

found application in diverse fields of human 

endeavour such as finance, civil and 

mechanical engineering, economics and 

environmental sciences, chemistry and 

physics, signal processing and filtering, 

population dynamics and psychology, 

pharmacology and medicine to mention just a 

few. The role of SDE in modelling continuous 

time stochastic dynamics can be compared to 

the roles of deterministic ordinary differential 

equations (ODE) in non random differentiable 

dynamics.

Stochastic differential equation arises 

when a deterministic differential equation is 

randomly perturbed by the white noise and it 

is characterized by its drift coefficient and the 

diffusion (volatility) coefficient (Oksendal, 

2000).  An SDE is therefore a degenerate form 

of the conventional deterministic differential 

equations in which the volatility coefficient is 

zero. A typical SDE can be written as:

The solutions of many mathematical models resulting in stochastic differential equations are based on 

the assumption that the drift and the volatility coefficients were linear functions of the solutions. We 

formulated a model whose basic parameters could be derived from observations over discretized time 

intervals rather than the assumption that the drift and the volatility coefficients were linear functions of 

the solutions. We took into consideration the possibility of an asset gaining, losing or stable in a small 

interval of time instead of the assumption of the Binomial Asset pricing models that posited that the 

price could appreciate by a factor p or depreciate by a factor 1-p. A multi-dimensional stochastic 

differential equation was obtained whose drift is the expectation vector and the volatility the 

covariance of the stocks with respect to each other. The resulting system of stochastic differential 

equations was solved numerically using the Euler Maruyama Scheme for multi-dimensional stochastic 

differential equations through the use of a computer program written in MatLab. We obtained a 

realization of the evolutions of their prices over a chosen interval of time.
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The first integral in (2) above is the 

conventional Riemann integral and hence the 

normal rule of calculus applies. The second 

integral however is not and hence requires 

some other rules of integration to be applied. 

We cannot interpret the second integral as a 

Riemann integral because it involves 

integration with respect to a Wienner process 

which is nowhere differentiable. Further still, 

it cannot be interpreted a Lebesque or 

Riemann integral because the Wienner 

process is not of any known bounded variation 

(Kloenden and Platen, 1992). Consequently, a 

new calculus called stochastic calculus was 

introduced.

Stochastic calculus is a branch of 

mathematics that operates on stochastic 

processes. It allows a consistent theory of 

integration to be defined for integrals of 

stochastic processes with respect to stochastic 

processes. It is used to model systems that 

behave randomly the best known of which is 

the Wiener process (named in honour of 

Norbert Wiener), which is used for modelling 

Brownian motion as described by Albert 

Einstein and other physical diffusion 

processes in space of particles subject to 

random forces. Since the 1970s, the Wiener 

process has been widely applied in financial 

mathematics and economics to model the 

evolution in time of stock prices and bond 

interest rates (Hui-Hsiung, 2000).

The Itô calculus named after Kiyoshi Itô 

extends the methods of calculus to stochastic 

processes such as Wiener process. It has 

important applications in mathematical 

finance and stochastic differential equations. 

The central concept is the Itô stochastic 

integral which is a generalization of the 

ordinary concept of a Riemann–Stieltjes 

integral. The generalization is in two respects. 

Firstly, if deals with random variables (more 

precisely, stochastic processes). Secondly, the 

method allows integration with respect to a 

non-differentiable function (technically, 

stochastic process). An alternative method to 

the Ito calculus is the Stratonovich calculus 

which was introduced by Ruslan L. 

Stratonovich and D.L. Fisk is the preferred 

method for modelling stochastic processes in 

applied mathematics (Kloenden and Platen, 

1992). 

The Ito Formula

The main tool for solving stochastic 

differential equations is the Ito formula. 

Consider a stochastic process            , 

that is H is a stochastic process satisfying the 

following conditions:

I. , a random variable. Hence, 

    where 

ii.

iii. f  is non anticipating on 

iv. Furthermore let                             . There 

exist such that for 

and any     then

v. For the function

Theorem (Ito Formula)

Let be a stochastic process and let 

f and g be functions satisfying conditions (I) -

(iii) above and 

 

 . Let  F be a function of  t and 

x  and let F(t,x)  have continuous derivative.

for  such  tha t  these  

derivatives satisfies condition (iv) and (v) 

above. Suppose also that the function 

satisfy the condition (iv) and (v). Let 

Then, F satisfies the stochastic differential 

equation
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[3], [5], [9] [11]. 

Statement of Problem

Many stochastic models of change in 

stock price were based on the hypothesis that 

the drift and diffusion coefficients of the 

stochastic differential equation are linear 

functions of the solutions. Then assuming data 

is available, statistical estimation methods 

such as the parametric and non-parametric 

methods will then be used to obtain values for 

the unknown parameters (Jarrow, et al.,1997). 

However, if the parameters are derived from 

basic assumptions, a better understanding of 

the parameters in the model will be achieved.

Furthermore, the Binomial Asset Pricing 

model considered the asset price to either go 

up by a factor p or down by a factor 1-p. The 

possibility of an asset price to remain stable 

over a time interval was not taken into 

consideration. The focus of this paper is to 

formulate a stochastic model for stochastic 

dynamical systems such as stocks whose 

parameters are derived from some basic 

assumptions.

Model Formulation 

Consider portfolio of three stocks   

we assume that in a small interval of time a �t, 

stock price may change by losing one unit (-1), 

remain stable (0) or gain one unit (+1) which 

we represent by [-1 0 1]. Figure 1 below shows 

the dynamics of change in the prices of the 

three stocks. 
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The proof of the theorem is available in 

literature such as [1], [2], [5] and several 

others.

Multidimensional Ito formula

The stock price model developed for the 

three stocks resulted in a three 3-deimentional 

system of stochastic differential equations. 

Hence the tool for solving this system of 

linear SDE is the multidimensional Ito 

formula. 

Consider the stochastic differential 

equation where  

is an nxm matrix. W (t) is an m dimensional Wiener 

process where the elements 

are independent of each other for           . Equation  (4) 

can therefore be written as

This can be written in integral form as

The multidimensional Ito formula can be stated as 

follows:

Let  F(t,X) be a smooth function of t and X. That is 

                        . Then the Ito  formula can be 

generalized for the multidimensional case as

The theorem and the proof of the Ito formula for the 

multidimensional case can found in literature such as 

and                                      

S S S
1, 2, and 3

stocks. 
Individual gains/ losses
             by S1 (1-2)

Simultaneous gains/losses
            by S1 S3
             (11 - 14)

Individual gains/losses
  by S   (5-6)3

Simultaneous gains/losses
by S2 S3 (15-18)

Individual gains/losses 
        by S2 (3-4)

Simultaneous gains/losses
by S1 S2 (7-10)

Simultaneous gains/losses
by S1 S2 S3 (19 - 26)

S1 S2 S3

S3

Figure 3.1: Schematic Diagram for the Stochastic Model for Change in Stock Price
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Since there are three stocks and each of 

them can change in three ways i.e. -1, 0, or 1 in 
3

the small interval of time �t, there are 3 =27 

Here, �t represent change in stock price. 

For example, �S =[1 0 0 ] represent a gain of 

1 unit in stock S  while stock S  and S remain 1 2 3  

stable; represent a simultaneous gain of 1 unit 

by stock S andS  and a loss of 1 unit stock S . 1 3 2

It is assumed that the change in the stock price 

is proportional to the price of the stock. For 

simultaneous gains/losses, we assume that the 

probability of the change is proportional to the 

product of the stock prices. This is reasonable 

as, supposing that the one of the stock price is 

zero then, the probability of a simultaneous 

gain is zero. It is also assumed that �t is 

sufficiently small so that P27 which is the 

probability that there is no change in the three 

stocks prices within the time interval �t is 

positive. 

The parameters b , d , i =1,...,3 , defines ii

possibilities. These possibilities are indicated 

in Table 1 below.

the rate at which stocks experience individual 

gains or losses respectively. The parameter  

    defines the 

rate at which stocks experience simultaneous 

gains and/or losses with each parameter 

depending on t 

�t S andS S1 2  2 

and S3  

 S andS S1 3  2 

and S3  

S S S1 2 1

S2 

S S1 3 

S1 

S andS S1 2  2 

. For example,    i s  t h e  

probability that stock i gains one unit in the time 

interval The change involving and 

simultaneously is denoted by         .  Also, 

      denotes the changes involving 

simultaneously. For example,         represent 

the change involving the two stocks  in which  

gains while losses. Also      represent the  

change involving the two stocks in which 

losses while gains. Finally,        denote the  

change in the three stocks and 

simultaneously. In all cases, the subscript 1 or 2 

represent loss of one unit or gain of one unit 

Table 1: Possible outcome of change in 3 stock price and the probabilities

 

S/N
 

Change in Stock price
 

 

         
Probabilities

 

1

 

[-1  0  0]

  2

 

[1   0  0]

  3

 

[0   1  0]

  
4

 

[0  -1  0]

  
5

 

[0  0  -1]

  

6

 

[0   0  1]

  

7

 

[-1  1  0]

  

8

 

[-1 -1  o]

  

9

 

[1   1  0]

  

10

 

[1  -1  0]

  

11

 

[-1  0  1]

  

12 [-1  0 -1]

  

13 [1   0  1]

  

14 [ 1  0 -1]

  

15 [0   1  1]

  

16 [0 -1  -1]

  

17 [0  -1  1]

  

18 [0  1  -1]

  

19 [-1  1  1]

  

20 [-1  1 -1]

  

21 [-1 -1 -1]

22 [-1 -1  1]

23 [1  -1 -1]

24 [1  1  -1]

25 [1  -1  1]

26 [1  1   1]

27 [0  0   0]
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respectively. It should be noted that 

Using the above representations for pi and 

the expectation vector is derived as follows:
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f1 Represent the tot
change in volving stock S1

ality of the likelihood of 

f2 Represent the tot
change involving stock S2

ality of the likelihood of 

f3 Represent the tot
change involving stock S3. Putting

ality of the likelihood of 
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Then the covariance matrix is derived as 
follows:  
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. As

Clearly, the covariance matrix is a positive 

symmetric and hence has a positive square 

root. 

Denoting                                 , the 

probability distribution of the stock price 

approximates the probability distribution of 

the solution of the system of stochastic 

differential equation [3]

Numerical Experiments

To test the model, random probabilities were  assigned for each possible change in the price of the stocks 

The randomly simulated probabilities for each event shown in the table 2 below:
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Algorithm for Generating Random Probabilities 

1. Initialize a loop 
2.   Get N 
3.   Generate a 1xN random numbers, Pr 
4.   Total � Sum (Pr) 
5.   P � (Pr/Total) % P is an array of N elements 

%  P must sum up to one, i.e  �
�

�
N

i

P
1

1 
6.  End the loop 

 



Table 2: Simulated Probabilities of events

S/N Change in Stock price

 

Probabilities

1

 

[-1  0  0]

 

0.047

 

2

 

[1   0  0]

 

0.052

 

3

 

[0   1  0]

 

0.007

 

4

 

[0  -1  0]

 

0.052

 

5

 

[0  0  -1]

 

0.036

 

6

 

[0   0  1]

 

0.006

 

7

 

[-1  1  0]

 

0.046

 

8

 

[-1 -1  o]

 

0.031

 

9

 

[1   1  0]

 

0.055

 

10

 

[1  -1  0]

 

0.055

 

11

 

[-1  0  1]

 

0.009

 

12

 

[-1  0 -1]

 

0.055

 

13

 

[1   0  1]

 

0.055

 

14

 

[ 1  0 -1]

 

0.027

 

15

 

[0   1  1]

 

0.046

 

16

 

[0 -1  -1]

 

0.008

 

17

 

[0  -1  1]

 

0.024

 

18

 

[0  1  -1]

 

0.052

 

19

 

[-1  1  1]

 

0.045

 

20

 

[-1  1 -1]

 

0.055

 

21

 

[-1 -1 -1]

 

0.038

 

22

 

[-1 -1  1]

 

0.002

 

23

 
[1  -1 -1]

 
0.049

 

24
 

[1  1  -1]
 

0.053
 

25
 

[1  -1  1]
 

0.039
 

26
 

[1  1   1]
 

0.043
 

27
 

[0  0   0]
 

0.043
 

Using the values in the table above, 

f1 = 7990; f2 = 0.7430; f3 = 0.6850.Hence, the expectation vector is:

and were calculated accordingly as:
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0.3670

    

0.1300

    

0.1460

 
0.1300

    

0.0590

    

0.1870

0.14600.18700.0990
  

This give rise to the SDE 
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0.3670    0.1300    0.1460 

0.1300    0.0590    0.1870 

0.1460    0.1870    0.0990

.
 

Numerical Solution

It is well known that only few stochastic 

differential equations can be solved 

analytically. We therefore solved the resulting 

system of stochastic differential equations 

above using the Euler- Maruyama scheme for 

the multidimensional case which is well 

discussed in [6], [7]. The scheme is give as: 

Simulations of the trajectories using the 

time interval of 0.005 for 360 times were as 

shown below in figure 1-4
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Figure 1:    Euler-Maruyama Simulation of the Stock Model

Change in Time, dt
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