
114 NIGERIAN ANNALS OF PURE & APPLIED SCIENCES, VOL. 7, ISSUE 2, 2024 http://napas.org.ng

Original Article

OPEN ACCESS
Correspondence:

S. Agber

Emails:
Specialty Section;This article was
submitted to Sciences a section of
NAPAS.

Submitted: 15th October, 2024

Accepted: 10th November, 2024

Citation: S. Agber, I. Agaji, B. O.
Akumba and S. I. Odoh (2025). An
Efficient Image Compression Using
Enhanced Huffman Algorithm

Effective Date 7(2) 114 - 122

For Reprint: editor.napas@gmail.com Nigerian Annals of Pure & Applied Sciences, Vol. 7, Issue 2, 2024

 http://napas.org.ng

An Efficient Image Compression Using
Enhanced Huffman Algorithm

S. Agber1, I. Agaji2, B. O. Akumba4 and S. I. Odoh4

1.Department of Mathematics and Computer Science, Benue State
University, Makurdi – Nigeria. email: seseagber@gmail.com
2.Department of Computer Science, Joseph Sarwuan Tarkar University,
Makurdi – Nigeria. email: sasemiks@gmail.com
3.Department of Mathematics and Computer Science, Benue State
University, Makurdi – Nigeria. email: beatriceakumba@gmail.com
4.Department of Computer Science, Federal University Lafia – Nigeria.

email: odohisahsamuel@gmail.com

Abstract
Data compression involves removing redundant bits from the source
data, thereby reducing the total size of the data in a manner that allows
the process to be reversed when desired. For images, this involves
either removing redundant pixels or representing the pixels with a
smaller number of bits. The problem addressed in this paper is the
inefficiency of the traditional Huffman coding algorithm in compressing
certain types of image files. To overcome this, we developed an
enhanced algorithm by modifying the Huffman coding technique. Our
methodology includes designing the enhanced Huffman algorithm to
better handle image data by considering pixel distribution and frequency
more effectively. We implemented the modified algorithm and evaluated
its performance against the traditional Huffman algorithm using a variety
of image formats: BMP, JPG, PNG, TIF, and GIF. The performance
metrics used for evaluation were compression ratio and compression
time. The results show that the Modified Huffman algorithm achieves
superior compression ratios for BMP, JPG, PNG, and TIF images, with
quantitative improvements of 0.91, 0.90, 0.91, 0.80 respectively,
compared to the traditional Huffman algorithm. However, for GIF
images, the traditional Huffman algorithm demonstrated a higher
compression ratio by 0.64. These results indicate that the Modified
Huffman algorithm provides a more efficient solution for compressing
most image formats, except for GIF images where the traditional
method remains preferable. This enhanced algorithm can be highly
beneficial for applications requiring optimized image storage and
transmission.

Keywords: Data compression, Image compression, Huffman
coding, Compression ratio

Publisher:cPrint,Nig.Ltd
Email:cprintpublisher@gmail.com

115AN EFFICIENT IMAGE COMPRESSION USING ENHANCED HUFFMAN ALGORITHM

Introduction
With the advent of the internet and increased
bandwidth, images and videos are moved around
the World Wide Web by millions of users almost in
a nonstop basis. Also, as the world continues to
move towards a digitized society, the need for
memory space for storing data is on the rise and in
some cases the need to use the available data for
instantaneous results. Implementing memory has
remained a high cost and as such the need to reduce
the size of files that are stored in memory without
losing their content, as well as returning the files to
their original size for use by some program [17].
This has brought about the need for reducing data
into smaller and more manageable sizes, both for
transmission and storage.

Several compression techniques have been put
forward and implemented. These algorithms vary
depending on the specific application, for which
they are to be used. Compression techniques differ
for text data and for image/video data, the reason
being that images and text are implemented
differently in memory. According to [17], images
are represented as two-dimensional or three-
dimensional arrays if the images are black and
white or coloured respectively.

Image compression seeks to reduce the
redundancy of the image and store or transmit data
in an efficient form. This objective is achieved using
various techniques which are already in existence.
The choice of technique for compression depends
on the application needs or requirements [2]. In
some cases it could be possible to use different
techniques for the same application and a choice
would need to be made for the most effective
technique to use.

Different algorithms have been proposed and
implemented by various researchers for
compressing and decompressing images for
storage, transmission and use on different devices
over the years. One of these compression
algorithms is the Huffman algorithm which has been
neglected over the years and no attempt has been
made at improving its performance, especially in
terms of its compression ratio. Huffman algorithm
uses a variable length code in which short code-
words are assigned to more common values or
symbols in the data, and longer code-words are
assigned to the less frequently occurring values. A
dictionary of the code-words is created and used
in replacing the original data.

The major constraint of the Huffman algorithm
is that the compression ratio is not certain. This

can cause problems especially in applications
where it is necessary to know the number of bytes
needed for a data set in advance [9].

There is a need to maximize the use of available
memory in the implementation of databases. This
is more obvious with the daily increase in the
number of databases in existence, thereby
increasing the amount of data and images that need
to be stored. A data compression scheme that will
offer a small compression ratio will imply less
storage requirement without any loss to the quality
of the data, which is most desirable for most
applications.

Review of Literature
Several empirical studies have focused on
enhancing the Huffman algorithm to improve its
performance for specific types of data, including
images.

[13] proposed an improved lossless image
compression algorithm that theoretically provides
an approximately quadruple compression ratio by
combining linear prediction, integer wavelet
transform (IWT) with output coefficients
processing, and Huffman coding. Their main
contribution lies in a new hybrid transform
exploiting a novel prediction template and a
coefficient processing method for IWT.
Experimental results on three different image sets
showed that their algorithm outperforms state-of-
the-art algorithms, with compression ratios
improved by at least 6.22% up to 72.36%. This
algorithm is particularly effective for compressing
images with complex textures and higher
resolutions at an acceptable compression speed.

[14] addressed the challenge of large digital
image file sizes by proposing a new near-lossless
image compression method that maintains image
quality while reducing file size. Their method
involves dividing the image into blocks, finding the
lowest value in each block, subtracting it from the
rest of the values in the same block, adjusting odd
numbers, dividing all values by two, and then
applying the Huffman Coding technique.
Experimental results using standard evaluation
measures (PSNR, MSE, and CR) demonstrated a
0.11% enhancement when using two-by-two
blocks and achieved high compression rates of
25%. This approach effectively balances
compression efficiency and image quality.

[11] focused on reducing image file sizes to
improve device performance and data transfer
efficiency. They compared various compression

116 NIGERIAN ANNALS OF PURE & APPLIED SCIENCES, VOL. 7, ISSUE 2, 2024 http://napas.org.ng

techniques, including RLE, Huffman, and LZW,
across different image file types. Their study
utilized both lossy and lossless compression
methods. For lossless compression, they achieved
the best quality reduction ratio with binary images,
yielding up to 99.10% compression for PNG
images. They also found that using lossy
compression for BMP images (such as converting
BMP to JPG) provided significant size reductions,
with an average compression ratio of 99%. Their
results indicate that different image formats and
compression techniques should be strategically
chosen to optimize storage and transmission
efficiency.

Data Compression
Data compression is the technique of reducing the
redundancies in data representation in order to
reduce data storage requirements [3]. According
to [9] data compression is simply the art or science
of representing information in compact form. With
reference to images, compression can be referred
to as reducing the size, in bytes, of a graphics file
with no degradation in the quality of the image to
an understandable level [12].

Categories of Compression Algorithms
Data compression methods take an input data, D
and generate a shorter representation of the data
c(D). The reverse process, called decompression
takes the compressed data c(D) and generates the
data D’, a representation of the original data [3].

Compression algorithms are categorised based
on the reversibility of the original data and the
manner in which the data is manipulated.
Categorization by reversibility of the original data
gives us two types, lossy and lossless compression
[7]. Categorizations by mode of data manipulation
also give two types, predictive and transform
coding. In lossy compression, the reconstructed
data is not an exact replica of the original data.
The general assumption here is that the data
doesn’t have to be stored perfectly. Lossy
compression is more suitable for images, video and
audio data since much information can be thrown
away from them and still produce acceptable
quality when uncompressed. In lossless
compression the reconstructed data is an exact
replica of the original data. This means that the
uncompressed data is exactly as it was before
compression. Text files are stored using lossless
techniques because, losing a single character can

make the text extremely misleading. Archival
storage for images, video and audio data also need
to be lossless as well.

In predictive coding, information already sent
or available is used to predict future values, and
the difference is coded. Since this is done in the
image or spatial domain, it is relatively simple to
implement and is readily adapted to local image
characteristics. Transform coding first transforms
the image from its spatial domain representation
to a different type of representation using some
well-known transform and then codes the
transformed values (coefficients). This method
provides greater compression compared to
predictive methods albeit at the expense of greater
computation.

Existing Image Compression Methods
Some image compression methods already in
existence and use include:

Fractal compression: This is a compression
method for digital images based on fractals. A
fractal is a mathematical set that exhibits a
repeating pattern displayed at every scale [4]. A
fractal compression algorithm first divides an image
into non-overlapping 8x8 blocks, called image range
blocks and forms a domain pool containing all of
probably overlapped 16x16 blocks, related with 8
isometrics from reflections and rotations, called
domain blocks. For each range block, it exhaustively
searches, in a domain pool, for a best matched
domain block with the minimum square error after
a contractive affine transform is applied to the
domain block. A fractal compressed code for a
range block consists of quantized contractively
coefficients in the affine transform, an offset which
is the mean of pixel grey levels in the range block,
the location of the best matched domain block and
its type of isometry [15].

Vector quantization compression: For image
compression using VQ, a codebook is setup
consisting of code vectors such that each vector
can represent a group of image blocks of size m x
m. An image is first divided into m x m non-
overlapping blocks which are represented as m 2-
tuple vectors (training vectors). The closest
matching vector in the codebook is determined for
each image vector and its index in the codebook is
used to encode the original image vector [16].

Arithmetic coding: This is a statistical method
that is similar to the Huffman method. The input
file is read symbol by symbol (until the end of the

117AN EFFICIENT IMAGE COMPRESSION USING ENHANCED HUFFMAN ALGORITHM

file) and the symbols tabulated along with intervals
representing the probabilities of their occurrence
– the order of the symbols is not important. Numeric
codes are generated for the symbols using these
intervals and used to represent the symbols in the
new file [1]. Compression is achieved by replacing
frequently occurring symbols with shorter codes
while the less occurring symbols are replaced with
longer codes.

Run-Length coding: Run Length encoding
is one of the simplest data compression methods.
The technique is useful in the case of repetitive
data. The idea behind this technique is this: if there
is a data item d which occurs n consecutive times
in the input stream, then the occurrences of d are

replaced with a single pair , where d is the

data item itself and n is the number of consecutive
occurrences of d [16].

LZW coding: Abraham Lempel and Jacob Ziv
proposed a compression algorithm in 1978 and
named it LZ-78, it was refined in 1984 by Terry
Welch and renamed LZW [1]. LZW is a
dictionary-based coding technique. The dictionary
can either be static or dynamic (the static dictionary
is fixed for the encoding and decoding process
while the dynamic dictionary is updated as the
encoding and decoding processes are carried out).
The algorithm constructs a dictionary of words or
parts of words in a file and then uses pointers to
the words in the dictionary to represent the file
[6][8].

Methodology
Huffman coding is an entropy encoding algorithm
used for lossless data compression. Entropy coding
refers to the use of a variable-length code table
for encoding a source symbol, where the code table
has been derived in a particular way based on the
estimated probability of occurrence for each
possible value of the source symbols. Huffman
coding utilizes a variable length code in which short
code-words are assigned to more common values
or symbols in the data, and longer code-words are
assigned to the less frequently occurring values.
These code-words are generated by creating a
binary tree using the symbols as leaves, according
to their frequencies and the path to each symbol is
taken as the code-word for that symbol. A
dictionary of the code-words is created and used
in replacing the original data

The advantage of this method is that it generally
produces good codes and is simple to implement.

It has a number of disadvantages though, the most
obvious being that the compression ratio is not
certain [9]. The aim of this research is to develop
an improved image compression algorithm by
modifying the traditional Huffman coding algorithm.
The proposed modifications are intended to
enhance the compression ratio without
compromising the quality of the image.

Model Architecture
The proposed image compression algorithm follows
a systematic process consisting of the following
steps:
1. Image Preprocessing: The input image

is first pre-processed to prepare it for
compression. This involves converting the
image into a suitable format (e.g.,
grayscale for certain types of analysis).

2. Frequency Analysis: The frequency of
each pixel value (or symbol) in the image
is calculated.

3. Modified Huffman Tree Construction:
Using the frequency data, a modified
Huffman tree is constructed. This step
involves the following modifications to the
traditional Huffman algorithm:

i. Block-based Processing: Instead of
processing the entire image as a single
data stream, the image is divided into
smaller blocks. Each block is processed
independently, which allows for more
localized optimization of the compression.

ii. Enhanced Symbol Mapping: Additional
symbol mapping techniques are applied
within each block to better capture the
redundancy and structure of the image
data.

4. Encoding: The modified Huffman coding
algorithm is applied to each block to
generate the compressed bitstream.

5. Image Reconstruction: During
decompression, the image blocks are
decoded and reassembled to reconstruct
the original image.

Modification of the Huffman Algorithm for
improved Compression
The modifications to the traditional Huffman
algorithm are designed to improve the compression
ratio for various image formats (BMP, JPG, PNG,
and TIF). The key modifications include:
1. Block-Based Processing: By dividing

the image into smaller blocks, the algorithm

118 NIGERIAN ANNALS OF PURE & APPLIED SCIENCES, VOL. 7, ISSUE 2, 2024 http://napas.org.ng

can more effectively handle local variations
in pixel intensity and structure. This leads
to better compression ratios for images
with complex textures and patterns. Since,
images often contain regions with different
statistical properties. Block-based
processing allows the algorithm to adapt
to these local properties more efficiently
than a global approach.

2. Adaptive Frequency Calculation: The
frequency of pixel values is calculated
adaptively for each block rather than for
the entire image. This approach captures
local redundancies more effectively,
leading to improved compression
performance.

3. Enhanced Symbol Mapping: Additional
symbol mapping techniques, such as run-
length encoding (RLE) within each block,
are integrated with the Huffman coding
process. By combining RLE with Huffman
coding, the algorithm can more efficiently
compress sequences of repeated values,
which are common in many images.

Considering the fact that compression involves
reducing redundancies present in the data [3], we
will attempt to further reduce these redundancies
from the output of the traditional Huffman
algorithm. To do this, we will add four steps to the
Huffman algorithm as in Figure 1. We will separate
the data stream obtained from the Huffman
algorithm into nibbles and consider the value of
each of these nibbles. We will then use two data
sets to represent the data based on the resulting
values of the nibbles. If the nibble value is greater
than zero, the nibble will be added to file I (which
contains the first data set). The nibbles whose
values are equal to zero will be discarded.

The second data set (contained in file II) will
contain a bit stream of 0’s and 1’s corresponding
with the nibbles that are evaluated. A 1 bit will be
added if the nibble value is greater than zero and a
0 bit will be added if the nibble value is equal to
zero.

The content of file I will then be appended to
that of file II for storage or transmission. The
number of bits contained in file II (before adding
file I) will be added to the header of the stored file
this detail will be used when the need to reverse
the process arises (at the receiving end of a
transmission or when the file is retrieved from

memory).

Figure 1: Flowchart of the Modified Huffman
Algorithm

Assumptions
Several assumptions are made in the development
and evaluation of the modified Huffman algorithm:
i. Image Characteristics: It is assumed

that the input images are either grayscale
or have been converted to a format
suitable for block-based processing.

ii. Block Size: A fixed block size is used for
all images, with the assumption that this
size provides a good balance between
compression efficiency and computational
complexity.

iii. Redundancy Patterns: The algorithm

119AN EFFICIENT IMAGE COMPRESSION USING ENHANCED HUFFMAN ALGORITHM

assumes that redundancy patterns within
blocks are similar enough to be captured
effectively by the modified symbol
mapping techniques.

Evaluation Metrics
To evaluate the performance of the proposed
algorithm, the following metrics are used:
i. Compression Ratio (CR): The ratio of

the original image size to the compressed
image size.

ii. Peak Signal-to-Noise Ratio (PSNR): A
measure of the reconstructed image
quality compared to the original image.

iii. Mean Squared Error (MSE): The
average squared difference between the
original and reconstructed image pixel
values.

Simulation Design
The simulation program was written using
MATLAB programming language. The program
is command driven and has two modules, each of
the which implements one of the algorithms we
wish to investigate. The program creates files
stored in a specified location in the system on which
it is run, where results of each simulation are
recorded. At the beginning of execution, the

program requests for an image as input. This image
is passed to each module where the specified
operations are carried out and the result recorded.

The simulation experiments were carried out
using five images (arbitrary value) for each image
format. The geometric mean of the compression
ratios was taken and used to evaluate the
performance of the algorithms for each image. This
is because a single extreme value has less impact
on the geometric mean of a series than on
arithmetic mean [5]. Evaluating the geometric
mean makes it harder for one algorithm to be rated
high or low for a particular group by achieving a
high or low score on just one image in the group,
thereby making the algorithm’s overall rating a
better indicator of its performance

Results
The simulations were run using images of the most
common formats (bmp, gif, jpg, png and tif). This
is so as to enable us observe the performance of
the algorithms for various categories of images.
Five images of different sizes and dimensions
stored using the formats stated above were used.
The resulting compression ratios are shown in
Figures 3(a) – 3(d) while the mean compression
ratios obtained are shown in Figure 4.

Figure 3(a): Compression Ratio for .jpg images

120 NIGERIAN ANNALS OF PURE & APPLIED SCIENCES, VOL. 7, ISSUE 2, 2024 http://napas.org.ng

Figure 3(b): Compression Ratio for .bmp images

Figure 3(c): Compression Ratio for .gif images

Figure 3(d): Compression Ratio for .tif images

121AN EFFICIENT IMAGE COMPRESSION USING ENHANCED HUFFMAN ALGORITHM

Figure 3(e): Compression Ratio for .png images

Figure 4 shows that the Modified Huffman
algorithm produces a better compression than the
original algorithm for the .bmp, .jpg, .png and .tiff
formats. The .gif format is the only exception,
where the original Huffman algorithm has better
compression ratio. This could be because gif
storage algorithm compresses images before
storing, which causes negative compression in the
attempt to further manipulate the Huffman output.

Summary, Conclusion and Recommendations
In this paper, we evaluated and modified the
Huffman algorithm with the aim of improving its
level of compression for image data. A simulation
program was written to implement the algorithms
in order to ascertain their performance using the
compression ratios of the algorithms. The results
obtained show an overall improved compression

ratio by the Modified Huffman algorithm.
Further work can be carried out to ascertain

why the algorithm’s performance varies for
different images, first for images of the same
format and then for different formats.

References
[1] Al-laham, M., & El Emary, I. M. (2007).

Comparative Study Between Various
Algorithms of Data Compression
Techniques. Proceedings of the World
Congress on Engineering and Computer
Science. San Francisco.

[2] Al-Mahmood, H., & Al-Rubaye, Z. (2014).
Lossless Image Compression based on
Predictive Coding and Bit Plane Slicing.
International Journal of Computer
Applications, 93(1), 1 - 6. doi:10.5120/

Figure 4: Comparison of Compression Ratios for selected Images

122 NIGERIAN ANNALS OF PURE & APPLIED SCIENCES, VOL. 7, ISSUE 2, 2024 http://napas.org.ng

16176-2068
[3] Arun, K. P. (2009). Implementtion of Image

Compression Algorithm Using Verilog
with Area Power and Timing Constraints.
National Institute of Technology, Rourkela:
Thesis Submitted to Department of
Electronics and Communications
Engineering.

[4] Boeing, G. (2016). Visual Analysis of Non-
Linear Dynamical Systems: Chaos, Fractals,
Self-Similarity and Limits of Prediction.
Systems, 4(4)(37). doi:10.3390/
systems4040037

[5] Carter, N. (2002). Computer Architecture:
Schaums Outline Series. New Delhi: Tata
McGraw Hill.

[6] Devi, M., & Mehta, U. (2016). A Review on
Variouis Techniques of Image Compression.
International Journal of Engineering and
Computer Science, 5(7), 17127 - 17129.
doi: 10.18535/ijecs/v5i7.01

[7] Dhawan, S. (2011). Review of Image
Compression and Comparison of its
Algorithms. International Journal of
Electronics and Communication
Technology, Vol 2(1), 22 - 26.

[8] Kaur, R., & Choudhary, P. (2016). A Review
of Image Compression Techniques.
International Journal of Computer
Applications, 142(1), 8 - 11. doi:10.5120/
ijca2016909658

[9] Khalid, S. (2006). Introduction to Data
Compression, Third Edition. San
Francisco: Elsevier Inc.

[10] Kodituwakku, S. R., & Amarasinghe, S. U.
(2010). Comparison of Lossless Data
Compression Algorithms for Text Data.
Indian Journal of Comoputer Science
and Engineering. Vol 1, No. 4, 416 - 425.

[11] Lantana, D. A., Sholihati, I. D., Sari, R. T., &
Hendrik, B. (2023). An Extensive Analysis
of Digital Image Compression Techniques

Using Different Image Files and Color
Formats. nternational Journal on
Advanced Science, Engineering and
Information Technology, 13(5).
doi:10.18517/ijaseit.13.5.19319

[12] Lata, A., & Singh, P. (2013). Review of Image
Compression Techniques. International
Journal of Emerging Technology and
Advanced Engineering. Vol 3, No. 7, 461
- 464.

[13] Liu, X., An, P., Chen, Y., & Huang, X. (2022).
An improved lossless image compression
algorithm based on Huffman coding.
Multimedia Tools and Applications, 81,
4781 - 4795. doi:10.1007/s11042-021-11017-
5

[14] Otair, M., Abualiga, L., & Quawaqzeh, M.
K. (2011). Improved near-lossless technique
using the Huffman coding for enhancing the
quality of image compression. Multimedia
Tools and Applications, 81, 28509 - 28529.
doi: 10.1007/s11042-022-12846-8

[15] Parwe, P. R., & Mandaogade, N. N. (2015).
A Review on Image Compression
Techniques. International Journal of
Computer Science and Mobile
Computing, Vol. 4, No 2, 198 - 201.

[16] Singh, A. P., Potnis, A., & Kumar, A. (2016).
A Review on Latest Techniques of Image
Compression. International Research
Journal of Engineering and Technology,
Vol 3, No 7., 727 - 734.

[17] Thyagarajan, K. S. (2011). Still Image and
Video Compression with Matlab.
Hoboken, New Jersey: John Wiley & Sons
Inc.

[18] Zhou, H., Wu, J., & Zhang, J. (2010). Digital
Image Processing: Part 1. Retrieved
August 17, 2016, from bookboon.com: http:/
/ bo okboo n .c om/e n /d i g i t a l - ima ge -

processing-part-one-ebook

